Answer on Question \#81884 - Math — Statistics and Probability

Question

Two players A and B toss a coin alternately. A begins the game and the player who first throws heads is the winner. B's coin is fair, but A's is biased and has probability p of showing heads. The value of p so that the game is equiprobable to both players.

Solution

Let A get the head in Nth trial to win the game.
Since he is flipping the coin in odd trials,
$\mathrm{P}(\mathrm{N}=1)=\mathrm{p}$,
$\mathrm{P}(\mathrm{N}=3)=(1-p) * 0.5 * p$,
$\mathrm{P}(\mathrm{N}=5)=(1-p)^{2} * 0.5^{2} * p$, and so on.
Thus, $\mathrm{P}(\mathrm{A}$ wins $)=p+(1-p) * 0.5 * p+(1-p)^{2} * 0.5^{2} * p+\cdots$
$=\sum\left(0.5^{i-1} *(1-p)^{i-1} * p\right)=\frac{p}{1-(0.5 *(1-p))}=\frac{p}{0.5+0.5 p}$
$\mathrm{P}($ wins $)=0.5$
$\frac{p}{0.5+0.5 p}=0.5$
$p=0.25+0.25^{*} p$
$0.75 * p=0.25$
$p=1 / 3 \approx 0.33$.
Answer: $p=1 / 3$.

