Answer on Question \#81794 - Math — Statistics and Probability

Question

The sides of a fair six-sided die are labeled with $1,2,3,4,5$, and 6 . Each side is equally likely to come up after each roll of the die. Independent rolls of the die are performed repeatedly until 3 or 6 comes up. Let X be the number of rolls up to and including the first time that 3 or 6 comes up. The expected value of X is

1. 1
2. 2
3. 3
4. 4
5. 5
6. 6
7. impossible to determine based on the given information
8. none of the above

Solution

Here we have a geometric distribution with $p=\frac{1}{3}, 1-p=\frac{2}{3}$.
The expected value of a geometrically distributed random variable X with $p=\frac{1}{3}$ is

$$
E(X)=\frac{1}{p}=\frac{1}{1 / 3}=3
$$

Answer: 3. 3.

