Answer on Question \#81791 - Math - Statistics and Probability

Question

According to the historical data gathered by an insurance company, the probability of a fire is 0.01. A manufacturer of fire alarms has determined through testing that a certain fire alarm has a 0.1 conditional probability to go off given that there is no fire, and a 0.2 conditional probability to remain silent given that there is a fire. The meaning of "go off" is that a fire alarm makes a loud sound or a bomb explodes.

Event A is that a fire breaks out. Event B is that the fire alarm goes off.
(a) If you hear this fire alarm go off, what is the conditional probability that there is a fire? In other words, what is $P(A \mid B)$?
(b) What is the conjunction probability, $P\left(B^{C} \cap A^{C}\right)$?

Solution

(a) $P(A)=0.01$
$P\left(B \mid A^{C}\right)=0.1, P\left(B^{C} \mid A\right)=0.2$
According to Bayes' rule

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

Apply the total probability theorem

$$
\begin{gathered}
P(B)=P(B \mid A) P(A)+P\left(B \mid A^{C}\right) P\left(A^{C}\right) \\
P(B)=(1-0.2)(0.01)+0.1(1-0.01)=0.107
\end{gathered}
$$

Hence,

$$
P(A \mid B)=\frac{(1-0.2)(0.01)}{0.107}=\frac{8}{107}
$$

(b) Conditional probability

$$
\begin{gathered}
P\left(B^{C} \mid A^{C}\right)=\frac{P\left(B^{C} \cap A^{C}\right)}{P\left(A^{C}\right)} \\
P\left(B^{C} \cap A^{C}\right)=P\left(B^{C} \mid A^{C}\right) P\left(A^{C}\right) \\
P\left(B^{C} \cap A^{C}\right)=(1-0.1)(1-0.01)=0.891
\end{gathered}
$$

Answer: a) $P(A \mid B)=\frac{8}{107}$; b) $P\left(B^{C} \cap A^{C}\right)=0.891$.

