Answer on Question \#81713 - Math - Statistics and Probability

Three turns of the same appearance are given as follows urn A contains 5 red and 6 white balls, urn B contains 6 red and 4 white balls, urn C contains 3 red and 5 white balls. An urn is selected at random and ball is drawn from the urn.

Question

(A) What is probability that ball drawn is red, white?

Solution

Let E_{A}, E_{B}, E_{C} and R be the events defined as follows:
$E_{A}=\operatorname{urn} \mathrm{A}$ is chosen, $E_{B}=$ urn B is chosen, $E_{C}=$ urn C is chosen, and $R=$ ball drawn is red.
Since there are three urns of the same appearance and one of three urns is chosen at random, therefore

$$
P\left(E_{A}\right)=P\left(E_{B}\right)=P\left(E_{C}\right)=\frac{1}{3}
$$

The probability of drawing a red ball from urn A is

$$
P\left(R \mid E_{A}\right)=\frac{5}{5+6}=\frac{5}{11}
$$

The probability of drawing a red ball from urn B is

$$
P\left(R \mid E_{B}\right)=\frac{6}{6+4}=\frac{3}{5}
$$

The probability of drawing a red ball from urn C is

$$
P\left(R \mid E_{C}\right)=\frac{3}{3+5}=\frac{3}{8}
$$

We are required to find $P(R)$.
By Law of total probability we have

$$
\begin{gathered}
P(R)=P\left(E_{A}\right) P\left(R \mid E_{A}\right)+P\left(E_{B}\right) P\left(R \mid E_{B}\right)+P\left(E_{C}\right) P\left(R \mid E_{C}\right) \\
P(R)=\frac{1}{3}\left(\frac{5}{11}\right)+\frac{1}{3}\left(\frac{3}{5}\right)+\frac{1}{3}\left(\frac{3}{8}\right)=\frac{200+264+165}{1320}=\frac{629}{1320} \approx 0.4765
\end{gathered}
$$

Le $\mathrm{t} W$ be the event that ball drawn is white.
If we are required to find $P(W)$, then

$$
\begin{aligned}
& P\left(W \mid E_{A}\right)=\frac{6}{5+6}=\frac{6}{11} \\
& P\left(W \mid E_{B}\right)=\frac{4}{6+4}=\frac{2}{5} \\
& P\left(W \mid E_{C}\right)=\frac{5}{3+5}=\frac{5}{8}
\end{aligned}
$$

By Law of total probability we have

$$
P(W)=P\left(E_{A}\right) P\left(W \mid E_{A}\right)+P\left(E_{B}\right) P\left(W \mid E_{B}\right)+P\left(E_{C}\right) P\left(W \mid E_{C}\right)
$$

$$
P(W)=\frac{1}{3}\left(\frac{6}{11}\right)+\frac{1}{3}\left(\frac{2}{5}\right)+\frac{1}{3}\left(\frac{5}{8}\right)=\frac{240+176+275}{1320}=\frac{691}{1320} \approx 0.5235
$$

Check

$$
P(R)+P(W)=\frac{629}{1320}+\frac{691}{1320}=1
$$

Question

(B) What is probability that ball is from urn A given that ball is red?

Solution

Let E_{A}, E_{B}, E_{C} and R be the events defined as follows:
$E_{A}=\operatorname{urn} \mathrm{A}$ is chosen, $E_{B}=\operatorname{urn} \mathrm{B}$ is chosen, $E_{C}=\operatorname{urn} \mathrm{C}$ is chosen, and $R=$ ball drawn is red.
Since there are three urns of the same appearance and one of three urns is chosen at random, therefore

$$
P\left(E_{A}\right)=P\left(E_{B}\right)=P\left(E_{C}\right)=\frac{1}{3}
$$

The probability of drawing a red ball from urn A is

$$
P\left(R \mid E_{A}\right)=\frac{5}{5+6}=\frac{5}{11}
$$

The probability of drawing a red ball from urn B is

$$
P\left(R \mid E_{B}\right)=\frac{6}{6+4}=\frac{3}{5}
$$

The probability of drawing a red ball from urn C is

$$
P\left(R \mid E_{C}\right)=\frac{3}{3+5}=\frac{3}{8}
$$

We are required to find $P\left(E_{A} \mid R\right)$.
By Bayes' theorem we have

$$
\begin{gathered}
P\left(E_{A} \mid R\right)=\frac{P\left(E_{A}\right) P\left(R \mid E_{A}\right)}{P\left(E_{A}\right) P\left(R \mid E_{A}\right)+P\left(E_{B}\right) P\left(R \mid E_{B}\right)+P\left(E_{C}\right) P\left(R \mid E_{C}\right)} \\
P\left(E_{A} \mid R\right)=\frac{\frac{1}{3}\left(\frac{5}{11}\right)}{\frac{1}{3}\left(\frac{5}{11}\right)+\frac{1}{3}\left(\frac{3}{5}\right)+\frac{1}{3}\left(\frac{3}{8}\right)}=\frac{200}{200+264+165}=\frac{200}{629} \approx 0.3180
\end{gathered}
$$

The probability that ball is from urn A given that ball is red

$$
P\left(E_{A} \mid R\right)=\frac{200}{629} \approx 0.3180
$$

