Answer on Question \#81709 - Math- Combinatorics | Number Theory

Question

$\left(x^{\wedge} 1+x^{\wedge} 2+\ldots \ldots \ldots \ldots+x^{\wedge} 100\right)^{\wedge} 500$ if you apply binomial theorem how many digits there will be

Solution

If by digit is meant any summand and coefficients are not put together (i.e. form $x^{500}+$ $\left.x^{500}+\ldots+x^{500}+x^{501}+\ldots+x^{501}+\ldots+x^{50000}+\ldots+x^{50000}\right)$ then the solution is following. There are 100 ways to choose the digit from the first multiplier $x+x^{2}+\ldots+x^{100}, 100$ ways to choose the digit from the second multiplier, and so on up to 100 ways to choose the digit from the $500^{\text {th }}$ multiplier. Then the total number of ways is
$\underbrace{100 \cdot 100 \cdot 100}_{500 \text { times }}=100^{500}$, it is the number of digits.

I thought that the question is about the number of digits which arise as powers (because the binomial theorem gives a form of sum with coefficients).
Then it was my solution:
The minimum power of x in the expansion of $\left(x+x^{2}+x^{3}+\ldots+x^{100}\right)^{500}$ is 500: $x \cdot x \cdot x \cdot \ldots$. $x=x^{500}$, the maximum power of x in the expansion is 50000: $x^{100} \cdot x^{100} \cdot \ldots \cdot x^{100}=$ $\left(x^{100}\right)^{500}=x^{50000}$.
Let us prove that for any $n \in \mathbb{Z}: 500 \leq n<50000 x^{n}$ is present in the expansion. We have

$$
\left(x+x^{2}+x^{3}+\ldots+x^{100}\right)^{500}=x^{500}\left(1+x+x^{2}+\ldots+x^{99}\right)^{500}
$$

Then we have to prove that for any $0 \leq m<49500 x^{m}$ is present in the expansion of $\left(1+x+x^{2}+\ldots+x^{99}\right)^{500}$.

Divide m by 99 :
$m=99 k+l$
where
$0 \leq k<500,0 \leq l<99$.
Then x^{m} can be represented as $x^{m}=\underbrace{x^{99} \cdot x^{99} \cdot \ldots \cdot x^{99}}_{k \text { times }} \cdot x^{l} \cdot \underbrace{1 \cdot 1 \cdot \ldots \cdot 1}_{500-1-k \geq 0 \text { times }}$, thus it is present in the expansion.

Then the number of digits is $50000-500+1=49501$ (we add 1 since we need to include both numbers 500 and 50000, and 50000-500 is number of numbers between 500 and 50000 not including 50000).

Answer provided by https://www.AssignmentExpert.com

