
ANSWER on Question #81519 – Math – Differential Equations 

QUESTION 

Reduce the following PDE to a set of three ODEs by the method of separation of variables 
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SOLUTION 
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In the above equation the left-hand side depends on 𝑟 and 𝜃, while the right-hand side depends on 𝑧. The only 

way these two members are going to be equal for all values of 𝑟, 𝜃 and 𝑧 is when both of them are equal to a 

constant. Let us define such constant as −𝑙2. 

With this choice for the constant, we obtain: 

𝑑2𝑍

𝑑𝑧2
− 𝑙2 ⋅ 𝑍 = 0 

The general solution of this equation is: 

𝑍(𝑧) = 𝐴1𝑒
𝑙𝑧 + 𝐴2𝑒

−𝑙𝑧 

Such a solution, when considering the specific boundary conditions, will allow 𝑍(𝑧) to go to zero for 𝑧 going to 

±∞, which makes physical sense. If we had given the constant a value of 𝑙2, we would have had periodic 

trigonometric functions, which do not tend to zero for 𝑧 going to infinity. 



Once sorted the 𝑧 −dependency, we need take care of 𝑟 and 𝜃.  
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Again we are in a situation where the only way a solution can be found for the above equation is when both 

members are equal to a constant. This time we select a positive constant, which we call 𝑚2. The equation for Θ 

becomes, for: 

𝑑2Θ

𝑑𝜃2
+𝑚2Θ = 0 

This solution is well suited, to describe the variation for an angular coordinate like 𝜃. Had we chosen the set 

both members equal to a negative number, we would have ended up with exponential functions with a different 

value assigned to Θ(𝜃) for each 360∘ turn, a clear non-physical solution. 

Last to be examined is the 𝑟 −dependency. We have: 
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This equation is a well-known equation of mathematical physics called parametric Bessel’s equation. With 

sample linear transformation of variable, 𝑥 = 𝑟 ⋅ √(𝑘2 + 𝑙2), equation is readily changed into a Bessel’s 

equation: 
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where 𝑅′′ and 𝑅′ indicate the first and second derivatives with respect to 𝑥. 

In what follows we will assume that 𝑚 is a real, non-negative number. 

Linearly independent solutions are typically denote 𝐽𝑚(𝑥) (Bessel Functions) and 𝑁𝑚(𝑥)(Neumann Functions).  
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