Answer on Question \#81506 - Math - Trigonometry

Question

A ship leaves port with a bearing of $N 55$ degrees W. After traveling 16 miles, the ship then turns 90 degrees and travels on a bearing of S 35 degrees W for 5 miles. At that time, what is the bearing of the ship from port? Round to the nearest tenth.

Solution

Fig. 1
We have right triangle as showing at Fig. 1
R_{1} - first displasment, equal 16 mi with a bearing of N 55 degrees W .
R_{2} - second displasment, equal 5 mi with a bearing of S 35 degrees W , after the ship then turns 90 degrees.

Then we obtaine riaght triangle. R_{1} and R_{2} are catheti, in right triangle (ABC). $\angle B=90^{\circ}$ Mark this angle x, then:

$$
\begin{gathered}
x=55^{\circ}+\angle B A C \\
\angle B A C=\tan ^{-1}\left(\frac{R_{2}}{R_{1}}\right)=\tan ^{-1}\left(\frac{5}{16}\right)=\tan ^{-1}(0.3125) \approx 17.4^{\circ} \\
x=55^{\circ}+\angle B A C=72.35^{\circ}
\end{gathered}
$$

Answer: The bearing of the ship from port is aqual $\mathrm{N} 72.4^{\circ} \mathrm{W}$.

