Question $#8148 \frac{d^2x}{dt^2} - 4 \frac{dx}{dt} - 5x = te^{2t} \cos 3t$ Solution. The general solution of linear non homogeneous equation is sum of general solution of the respective homogeneous equation and any solution of non-homogeneous. The general solution of homogeneous is $x(t) = C_1 e^{5t} + C_2 e^{-t}$. The solution of non-homogeneous should be found in the form $e^{2t}(ax + b)\cos 3t + e^{2t}(cx + d)\sin 3t$. It can be verified by substituting, that $x_0(t) = -1/54e^{2t}(3t\cos(3t) - \sin 3t)$. Thus, the general solution is $x(t) = C_1 e^{5t} + C_2 e^{-t} - 1/54e^{2t}(3t\cos(3t) - \sin 3t)$. **Answer**. $x(t) = C_1 e^{5t} + C_2 e^{-t} - 1/54e^{2t}(3t\cos(3t) - \sin 3t)$.