Answer on Question #81459 – Math – Statistics and Probability

Consider the following population test scores for a class: 99, 100, 62, 75, 81, 68, 74, 86, 79, 91, 77, 82, 96, 84, 71

a. Compute:

Question

mean

Solution

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\mu = \frac{99 + 100 + 62 + 75 + 81 + 68 + 74 + 86 + 79 + 91 + 77 + 82 + 96 + 84 + 71}{15}$$

$$\mu = \frac{245}{3} \approx 81.6667$$

Question

median

Solution

Median will be the middle element of the sorted list 62, 68, 71, 74, 75, 77, 79, 81, 82, 84, 86, 91, 96, 99, 100 median = 81

Question

mode

Solution

62, 68, 71, 74, 75, 77, 79, 81, 82, 84, 86, 91, 96, 99, 100 Since each value occurs only once in the data set, there is no mode for this set of data.

Question

standard deviation

Solution

$$\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2}$$
$$\sigma = 11.2546$$

Question

b. Determine P80

Solution

$$z = 0.8418$$

$$P80 = \mu + \sigma z$$

$$P80 = \frac{245}{3} + 11.2546(0.8418) = 91.1408$$

Question

P90

Solution

$$z = 1.2817$$

$$P80 = \mu + \sigma z$$

$$P80 = \frac{245}{3} + 11.2546(1.2817) = 96.0917$$

Question

c. Calculate the interquartile range

Solution

62, 68, 71, 74, 75, 77, 79, 81, 82, 84, 86, 91, 96, 99, 100
First quartile:
$$\frac{1}{4}(n+1) = \frac{1}{4}(15+1) = 4$$

 $x_4 = 74$

Third quartile:
$$\frac{3}{4}(n+1) = \frac{3}{4}(15+1) = 12$$

 $x_{12} = 91$

The interquartile range = Third quartile – First quartile $x_{12} - x_4 = 91 - 74 = 17$ The interquartile range: 17.

Answer provided by <u>https://www.AssignmentExpert.com</u>