Answer on Question \#81448 - Math - Geometry

Question

$A B C D$ is a quadrilateral with $A B$ equal and parallel to DC.prove that $A D$ is equal and parallel to $B C$.

Solution

Given : $A B=C D$,
AB $\| \mathrm{CD}$
Prove: $A D=B C, A D \| B C$

Proof:

Statements	Reasons $2 A B=C D, \mathrm{AB} \mathrm{\\|} \mathrm{CD}$
$2 \angle B A C=\angle A C D$	Given Alternate Interior Angles Theorem If two parallel lines are cut by a transversal, then each pair of alternate interior angles is congruent
$m \angle B A C \cong m \angle A C D$	Definition of congruent angles
$3 \triangle A B C=\triangle A D C$	SAS Side-Angle-Side Congruence If two sides and the included angle of one triangle are congruent to two sides and the included angle of another triangle, then the triangles are congruent.
$4 A B=C D$	Definition of congruent sides in congruent triangles
$5 . \angle A B C=\angle A D C$	Definition of congruent angles
$m \angle A B C \cong m \angle A D C$	Definition of congruent angles that a paines in a plane are cut by a transversal so congruent, then the lines are parallel.
$6 . \mathrm{AB} \\| \mathrm{CD}$	

