## Answer on Question \#81428, Math/Real Analysis

Show that the functions $f(x, y)=\ln x-\ln y$ and $g(x, y)=\left(x^{2}+2 y^{2}\right) / 2 x y$ are functionally dependent.

The answer: By definition, two functions $f(x, y)$ and $g(x, y)$ defined in a domain $D$ are functionally dependent of there exists a continuously differentiable function $\phi(u, v)$ such that:

- $\phi(f(x, y), g(x, y)) \equiv 0$
- $\Delta \phi \neq 0$ at each point $(u, v)=(f(x, y), g(x, y))$ for $(x, y)$ in $D$.

Then following the theorem: 'If $F$ is differentiable transformation defined as

$$
F:\left\{\begin{array}{l}
u=f(x, y) \\
v=g(x, y)
\end{array}\right.
$$

and $f$ and $g$ are linearly dependent, then the Jacobian of $F$ is identically zero'
So in our case $f(x, y)=\ln x-\ln y$ and $g(x, y)=\left(x^{2}+2 y^{2}\right) / 2 x y$, i.e. $x, y>0$. To get the Jacobian one needs to calculate the partial derivatives: $f_{x}, f_{y}, g_{x}, g_{y}$ :

$$
\begin{aligned}
& f_{x}=\frac{1}{x} \cdot, \quad f_{y}=-\frac{1}{y} \\
& g_{x}=\frac{2 x * 2 x y-2 y *\left(x^{2}+2 y^{2}\right)}{4 x^{2} y^{2}}=\frac{x^{2}-2 y^{2}}{2 x^{2} y} \\
& g_{y}=\frac{4 y * 2 x y-2 x\left(x^{2}+2 y^{2}\right)}{4 x^{2} y^{2}}=\frac{-x^{2}+2 y^{2}}{2 x y^{2}}
\end{aligned}
$$

then

$$
\operatorname{det} J=\operatorname{det}\left[\frac{d(f, g)}{d(x, y)}\right]=f_{x} g_{y}-f_{y} g_{x}=\frac{-x^{2}+2 y^{2}}{2 x^{2} y^{2}}+\frac{x^{2}-2 y^{2}}{2 x^{2} y^{2}}=0
$$

Therefore the functions $f(x, y)=\ln x-\ln y$ and $g(x, y)=\left(x^{2}+2 y^{2}\right) / 2 x y$ are functionally dependent.

As $f(x, y)=\ln x-\ln y=\ln \frac{x}{y}$ then $\frac{x}{y}=e^{f(x, y)}$. Therfore

$$
g(x, y)=\frac{\left(x^{2}+2 y^{2}\right)}{2 x y}=\frac{1}{2} \frac{x}{y}+\frac{y}{x}=\frac{1}{2} e^{f(x, y)}+\frac{1}{e^{f(x, y)}}
$$

that confirms a functional dependence of $f$ and $g$ functions.

