Answer on Question \#81427 - Math - Algebra

Question

10 people are seating on chairs around a circular table. These chairs are marked in a clockwise manner. There is a ball on the man's hand who is seated on 0 marked chair, and the ball will be passed from one man to another in clockwise manner.
In first step, the ball goes to 1 marked chair with 1 turn.
In second step, from there, the ball goes to 5 marked chair with $2^{\wedge} 2$ turns. In third step, the ball goes to 2 marked chair by $3^{\wedge} 3$ turns from 5 marked chair. By this means, in which chair the ball will be in 2017^th step?

Solution

Write expressions for the first three turns:

$$
\begin{gathered}
0+1^{2} \cdot 10+1=1 \mathbf{1} \\
\mathbf{1}+2^{2} \cdot 10+4=45 \\
5+3^{2} \cdot 10+7=102 \\
2+4^{2} \cdot 10+10=172
\end{gathered}
$$

[this problem must be solved by programming]

$$
\begin{aligned}
& \mathbf{0}+2016^{2} \cdot 10+6046=40648606 \\
& \mathbf{6}+2017^{2} \cdot 10+6049=40688945
\end{aligned}
$$

There is a pattern: the first term of the expression is the last number of the previous expression's answer, n^{2} - numbers of turns, 10 - quantity of chairs, the last term - term of arithmetic progression with the first term 1 and difference 3 .

On the $2017^{\text {th }}$ turn the ball will be in the hands of the man sitting on the chair 5 .

Answer:

5

