Answer on Question \#81409 - Math - Linear Algebra

Question

Check whether the vector $(2 \sqrt{3} ; 2)$ is equally inclined to the vectors $(2 ; 2 \sqrt{3})$ and $(4 ; 0)$.

Solution

We have three vectors:

$$
\begin{aligned}
& \bar{a}=(2 \sqrt{3} ; 2) \\
& \bar{b}=(2 ; 2 \sqrt{3}) \\
& \bar{c}=(4 ; 0)
\end{aligned}
$$

We should check if angles $\widehat{a, b}$ and $\widehat{a, c}$ are equal.
Angles can be found by the following formulas (see Geometric definition from https://en.wikipedia.org/wiki/Dot_product):

$$
\begin{aligned}
& \cos \widehat{a, b}=\frac{\bar{a} \cdot \bar{b}}{|\bar{a}| \cdot|\bar{b}|} \\
& \cos \widehat{a, c}=\frac{\bar{a} \cdot \bar{c}}{|\bar{a}| \cdot|\bar{c}|}
\end{aligned}
$$

where $\bar{a} \cdot \bar{b}$ and $\bar{a} \cdot \bar{c}$ are scalar (dot) products of vectors, $|\bar{a}|,|\bar{b}|,|\bar{c}|$ are lengths of vectors. We have

$$
\begin{gathered}
\cos \widehat{a, b}=\frac{\bar{a} \cdot \bar{b}}{|\bar{a}| \cdot|\bar{b}|}=\frac{2 \sqrt{3} \cdot 2+2 \cdot 2 \sqrt{3}}{\sqrt{(2 \sqrt{3})^{2}+2^{2}} \cdot \sqrt{2^{2}+(2 \sqrt{3})^{2}}}=\frac{8 \sqrt{3}}{16}=\frac{\sqrt{3}}{2} \\
\cos \widehat{a, c}=\frac{\bar{a} \cdot \bar{c}}{|\bar{a}| \cdot|\bar{c}|}=\frac{2 \sqrt{3} \cdot 4+2 \cdot 0}{\sqrt{(2 \sqrt{3})^{2}+2^{2}} \cdot \sqrt{4^{2}+0^{2}}}=\frac{8 \sqrt{3}}{16}=\frac{\sqrt{3}}{2}
\end{gathered}
$$

As we can see, angles have equal cosines, so we can say that \bar{a} is equally inclined to \bar{b} and \bar{c}.
Answer: vector $(2 \sqrt{3} ; 2)$ is equally inclined to the vectors $(2 ; 2 \sqrt{3})$ and $(4 ; 0)$.

