Answer on Question \#81384 - Math - Linear Algebra

which of the following statements are true and which are false? justify your answer with a short proof or a counterexample.

Question

(i) $\quad \mathbb{R}^{2}$ has infinitely many nonzero, proper vector subspaces

Solution

Let $\left\{e_{1}, e_{2}\right\}$ be a basis in \mathbb{R}^{2}. Then
$W_{n}=\left\{\alpha\left(e_{1}+n e_{2}\right), \alpha \in \mathbb{R}\right\}, n \in \mathbb{N}$
are all different proper vector subspaces. Indeed, suppose $W_{n}=W_{m}$. Then
$e_{1}+n e_{2}=\alpha\left(e_{1}+m e_{2}\right)$
for some α.
Then
$(\alpha-1) e_{1}+(m \alpha-n) e_{2}=0$
from which $\alpha=1, \alpha=n / m$, i.e. $n=m$.
This proves that W_{n} are all different. And there are infinitely many of them.
Conclusion: \mathbb{R}^{2} has infinitely many nonzero, proper vector subspaces - true.

Question

ii) if $T: V \rightarrow W$ is one-one linear transformation between two finite dimensional vector spaces V and W then T is invertible

Solution

Let T be one-to one. For any $y \in W$ define $S y$ as the (unique) solution to $T x=y$.
Then obviously
$S(T x)=x$.
It is sufficient to prove that S is linear.

$$
S\left(\alpha_{1} y_{1}+\alpha_{2} y_{2}\right)=\alpha_{1} S y_{1}+\alpha_{2} S y_{2}
$$

Let $S y_{1}=x_{1}, S y_{2}=x_{2}$. Then
$T\left(\alpha_{1} x_{1}+\alpha_{2} x_{2}\right)=T\left(\alpha_{1} S y_{1}+\alpha_{2} S y_{2}\right)=\alpha_{1} T\left(S y_{1}\right)+\alpha_{2} T\left(S y_{2}\right)=\alpha_{1} y_{1}+\alpha_{2} y_{2}$,
from which

$$
\alpha_{1} x_{1}+\alpha_{2} x_{2}=S\left(\alpha_{1} y_{1}+\alpha_{2} y_{2}\right)
$$

which proves linearity.
Conclusion: if $T: V \rightarrow W$ is one-one linear transformation between two finite dimensional vector spaces V and W then T is invertible - true.

Question

iii) if $A^{\wedge} k=0$ for a square matrix A, then all the eigen values of a are nonzero

Solution

Consider $A=0$. It has all zero eigenvalues.
Conclusion: if $A^{\wedge} k=0$ for a square matrix A, then all the eigen values of a are nonzero - false.

Question

iv) every unitary operator is invertible

Solution

By definition an unitary operator U is such that
$U U^{*}=U^{*} U$,
thus U^{*} is inverse of U.
Conclusion: every unitary operator is invertible - true.

Question

v) every system of homogeneous linear equations has a nonzero solution

Solution

Consider a system:
$\left\{\begin{array}{l}x_{1}+x_{2}=0 \\ x_{1}-x_{2}=0\end{array}\right.$
It has only zero solution.
Conclusion: every system of homogeneous linear equations has a nonzero solution - false.

Answer:

(i) \mathbb{R}^{2} has infinitely many non zero, proper vector subspaces - true;
ii) if $T: V \rightarrow W$ is one-one linear transformation between two finite dimensional vector spaces

V and W then T is invertible - true;
iii) if $A^{\wedge} k=0$ for a square matrix A, then all the eigen values of a are nonzero - false;
iv) every unitary operator is invertible - true;
v) every system of homogeneous linear equations has a nonzero solution - false.

