Answer on Question #81342 – Math – Calculus

Question

Show that the function $f(x) = x - 4 + \cos(-2x)$ is even, odd, or neither. Algebraically.

Solution

The function f(x) is odd if f(-x) = -f(x) for all x in the domain of function f(x). The function f(x) is even if f(-x) = f(x) for all x in the domain of function f(x). Note that the domain of function f(x) contains all real number and $f(-x) = (-x) - 4 + \cos(-2(-x)) = -x - 4 + \cos(2x)$. Note that the function Cosine is even, so $\cos(-2x) = \cos(2x)$, therefore $f(x) = x - 4 + \cos(2x)$. Consider $-f(x) = -(x - 4 + \cos(2x)) = -x + 4 - \cos(2x)$. We see that $f(-x) \neq -f(x)$ and $f(-x) \neq f(x)$, hence f(x) is neither even nor odd.

Answer: the function $f(x) = x - 4 + \cos(-2x)$ is neither even nor odd.