Answer on Question \#81342 - Math - Calculus

Question

Show that the function $f(x)=x-4+\cos (-2 x)$ is even, odd, or neither. Algebraically.

Solution

The function $f(x)$ is odd if $f(-x)=-f(x)$ for all x in the domain of function $f(x)$. The function $f(x)$ is even if $f(-x)=f(x)$ for all x in the domain of function $f(x)$.
Note that the domain of function $f(x)$ contains all real number and $f(-x)=(-x)-4+\cos (-2(-x))=-x-4+\cos (2 x)$.
Note that the function Cosine is even, so $\cos (-2 x)=\cos (2 x)$, therefore $f(x)=x-4+\cos (2 x)$.
Consider
$-f(x)=-(x-4+\cos (2 x))=-x+4-\cos (2 x)$.
We see that $f(-x) \neq-f(x)$ and $f(-x) \neq f(x)$, hence $f(x)$ is neither even nor odd.
Answer: the function $f(x)=x-4+\cos (-2 x)$ is neither even nor odd.

