ANSWER on Question \#81273 - Math - Geometry

QUESTION

In a parallelogram $A B C D, P$ divides $A B$ in the ratio $2: 5$ and Q divides $D C$ in the ratio $3: 2$. If $A C$ and $P Q$ intersect at R. Find the ratio $A R: R C$ and $P R: R Q$.

SOLUTION

Draw pattern to this problem

Since P divides $A B$ in the ration $2: 5$, then we introduce the proportionality coefficient $-x$.

$$
A P=2 x \text { and } B P=5 x
$$

Since Q divides $D C$ in the ration $2: 3$, then we introduce the proportionality coefficient $-y$.

$$
C Q=2 y \text { and } D Q=3 y
$$

Since $A B C D$ is a parallelogram, then

$$
A B=C D \rightarrow A P+P B=C Q+D Q \rightarrow 2 x+5 x=2 y+3 y \rightarrow 7 x=5 y \rightarrow \frac{x}{y}=\frac{5}{7}
$$

Consider triangles $\triangle A P R$ and $\triangle C Q R$:

$$
\angle P R A=\angle C R Q \text { as a pair of vertical angles }
$$

(More information: https://en.wikipedia.org/wiki/Angle\#Vertical and adjacent angle_pairs)

$$
\angle P A R=\angle Q C R \text { as a pair of internal multi - faceted angles with } A B \| C D \text { and } A C-\text { secant }
$$

Then,
$\triangle A P R \sim \triangle C Q R$ triangles are similar (AAA, angle angle angle)

$$
\Delta A P R \sim \triangle C Q R \rightarrow \frac{A P}{C Q}=\frac{P R}{Q R}=\frac{A R}{C R} \rightarrow \frac{2 x}{2 y}=\frac{P R}{Q R}=\frac{A R}{C R} \rightarrow \frac{P R}{Q R}=\frac{A R}{C R}=\frac{x}{y}=\frac{5}{7}
$$

Conclusion,

$$
\begin{aligned}
& \frac{P R}{Q R}=\frac{5}{7} \rightarrow P R: Q R=5: 7 \\
& \frac{A R}{C R}=\frac{5}{7} \rightarrow A R: C R=5: 7
\end{aligned}
$$

ANSWER

$$
\begin{aligned}
& P R: Q R=5: 7 \\
& A R: C R=5: 7
\end{aligned}
$$

