

ANSWER on Question #81271 – Math – Geometry

QUESTION

$ABCD$ is a plane quadrilateral and E is any point on AD . EF is drawn parallel to DB to meet AB in F and EG is drawn parallel to DC to meet AC in G . Prove that FG is parallel to BC .

SOLUTION

$$EF \parallel BD \rightarrow \Delta AFE \sim \Delta ABD \rightarrow \frac{AF}{AB} = \frac{FE}{BD} = \frac{AE}{AD} = k$$

$$ER \parallel CD \rightarrow \Delta AGE \sim \Delta ACD \rightarrow \frac{AG}{AC} = \frac{GE}{CD} = \frac{AE}{AD} = m$$

Then,

$$k = \frac{AE}{AD} = m \rightarrow \boxed{m = k}$$

We have vectors \overrightarrow{EF} , \overrightarrow{DB} , \overrightarrow{EG} , \overrightarrow{DC} , \overrightarrow{FG} , and \overrightarrow{BC} .

$$\overrightarrow{FG} = \overrightarrow{EG} - \overrightarrow{EF}$$

$$\overrightarrow{BC} = \overrightarrow{DC} - \overrightarrow{DB}$$

$$\overrightarrow{DB} = \frac{1}{k} \cdot \overrightarrow{EF}$$

$$\overrightarrow{DC} = \frac{1}{m} \cdot \overrightarrow{EG} = \frac{1}{k} \cdot \overrightarrow{EG}$$

Then,

$$\overrightarrow{BC} = \overrightarrow{DC} - \overrightarrow{DB} = \frac{1}{k} \cdot \overrightarrow{EG} - \frac{1}{k} \cdot \overrightarrow{EF} = \frac{1}{k} \cdot (\overrightarrow{EG} - \overrightarrow{EF}) = \frac{1}{k} \cdot \overrightarrow{FG}$$

$$\boxed{\overrightarrow{BC} = \frac{1}{k} \cdot \overrightarrow{FG}}$$

Conclusion,

The vectors \overrightarrow{BC} and \overrightarrow{FG} are collinear vectors. Hence, $BC \parallel FG$

Q.E.D.