ANSWER on Question \#81271 - Math - Geometry

QUESTION

$A B C D$ is a plane quadrilateral and E is any point on $A D$. $E F$ is drawn parallel to $D B$ to meet $A B$ in F and $E G$ is drawn parallel to $D C$ to meet $A C$ in G. Prove that $F G$ is parallel to $B C$.

SOLUTION

$$
\begin{aligned}
& E F \| B D \rightarrow \triangle A F E \sim \triangle A B D \rightarrow \frac{A F}{A B}=\frac{F E}{B D}=\frac{A E}{A D}=k \\
& E R \| C D \rightarrow \triangle A G E \sim \triangle A C D \rightarrow \frac{A G}{A C}=\frac{G E}{C D}=\frac{A E}{A D}=m
\end{aligned}
$$

Then,

$$
k=\frac{A E}{A D}=m \rightarrow m=k
$$

We have vectors $\overrightarrow{E F}, \overrightarrow{D B}, \overrightarrow{E G}, \overrightarrow{D C}, \overrightarrow{F G}$, and $\overrightarrow{B C}$.

$$
\begin{gathered}
\overrightarrow{F G}=\overrightarrow{E G}-\overrightarrow{E F} \\
\overrightarrow{B C}=\overrightarrow{D C}-\overrightarrow{D B} \\
\overrightarrow{D B}=\frac{1}{k} \cdot \overrightarrow{E F} \\
\overrightarrow{D C}=\frac{1}{m} \cdot \overrightarrow{E G}=\frac{1}{k} \cdot \overrightarrow{E G}
\end{gathered}
$$

Then,

$$
\begin{gathered}
\overrightarrow{B C}=\overrightarrow{D C}-\overrightarrow{D B}=\frac{1}{k} \cdot \overrightarrow{E G}-\frac{1}{k} \cdot \overrightarrow{E F}=\frac{1}{k} \cdot(\overrightarrow{E G}-\overrightarrow{E F})=\frac{1}{k} \cdot \overrightarrow{F G} \\
\overrightarrow{B C}=\frac{1}{k} \cdot \overrightarrow{F G}
\end{gathered}
$$

Conclusion,
The vectors $\overrightarrow{B C}$ and $\overrightarrow{F G}$ are collinear vectors. Hence, $B C \| F G$

Q.E.D.

