Answer on Question \#81264 - Math - Linear Algebra

Question

Check whether the vector $(2 \sqrt{3}, 2)$ is equally inclined to the vectors $(2,2 \sqrt{3})$ and $(4,0)$.

Solution

Let $\vec{a}=(2 \sqrt{3}, 2), \vec{b}=(2,2 \sqrt{3})$ and $\vec{c}=(4,0)$.
Find dot product

$$
\begin{aligned}
& \vec{a} \cdot \vec{b}=2 \sqrt{3}(2)+2(2 \sqrt{3})=8 \sqrt{3} \\
& \vec{a} \cdot \vec{c}=2 \sqrt{3}(4)+2(0)=8 \sqrt{3} \\
& |\vec{a}|=\sqrt{(2 \sqrt{3})^{2}+(2)^{2}}=4 \\
& |\vec{b}|=\sqrt{(2)^{2}+(2 \sqrt{3})^{2}}=4 \\
& |\vec{c}|=\sqrt{(4)^{2}+(0)^{2}}=4 \\
& \cos \beta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}=\frac{8 \sqrt{3}}{4 \cdot 4}=\frac{\sqrt{3}}{2} \\
& \cos \gamma=\frac{\vec{a} \cdot \vec{c}}{|\vec{a}||\vec{c}|}=\frac{8 \sqrt{3}}{4 \cdot 4}=\frac{\sqrt{3}}{2}
\end{aligned}
$$

Therefore, the vector $(2 \sqrt{3}, 2)$ is equally inclined to the vectors $(2,2 \sqrt{3})$ and $(4,0)$.

