Answer on Question \#81206 - Math - Discrete Mathematics

Question

Find the number of equivalence relations that can be defined on a set of 6 elements.

Solution

The number to find is the number of different partitions of a set of 6 elements into equivalence classes.

Let A_{n} denote the number of partitions for a set of n elements. We need to find A_{6}.
We will find a recursive formula for A_{n}. First, $A_{0}=1$ (no elements, one way), $A_{1}=1$ (one element, one way).

For the set of n element take one particular element. There are the following possibilities:

- this element is not equivalent to any other - there will be A_{n-1} such partitions (we take any partition of other n - 1 elements and add a class with this one particular element to it)
- this element is in equivalence class with exactly one other element - there are $\binom{n-1}{1}$ ways to choose this element and A_{n-2} partitions of all other elements corresponding to each choice, totally $\binom{n-1}{1} A_{n-2}$ partitions
- this element is in equivalence class with exactly two other elements - there are $\binom{n-1}{2}$ ways to choose these elements and A_{n-3} partitions of all other elements corresponding to each choice, totally $\binom{n-1}{2} A_{n-3}$ partitions
- this element is in equivalence class with all other elements - there are $\binom{n-1}{n-1}$ ways to choose these other elements and A_{0} partitions of all other elements corresponding to each choice, totally $\binom{n-1}{n-1} A_{0}=1$ partitions

Thus, the formula is

$$
A_{n}=A_{n-1}+\binom{n-1}{1} A_{n-2}+\binom{n-1}{2} A_{n-3}+\ldots+\binom{n-1}{n-2} A_{1}+A_{0}
$$

It follows from the formula that
$A_{2}=A_{1}+A_{0}=2$,
$A_{3}=A_{2}+2 A_{1}+A_{0}=2+2 \cdot 1+1=5$,
$A_{4}=A_{3}+3 A_{2}+3 A_{1}+A_{0}=5+3 \cdot 2+3 \cdot 1+1=15$,
$A_{5}=A_{4}+4 A_{3}+6 A_{2}+4 A_{1}+A_{0}=15+4 \cdot 5+6 \cdot 2+4 \cdot 1+1=52$

$$
A_{6}=A_{5}+5 A_{4}+10 A_{3}+10 A_{2}+5 A_{1}+A_{0}=52+5 \cdot 15+10 \cdot 5+10 \cdot 2+5 \cdot 1+1=203 .
$$

Answer: 203 equivalence relations.

