
Answer on Question #81194 – Math – Statistics and Probability 

Question 

Use the Neyman-Pearson Lemma to obtain the best critical region for testing 

H0: mu=0 against H1: mu<>0 in the case of a normal population N(mu, sigma^2), 

where sigma^2 is known. Hence find the power of the test.  

 

Solution 

Consider the relation of likelihood 
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Then the critical region by Neyman-Pearson lemma will be of the form  

2𝑛𝜇�̅� − 𝑛𝜇2
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If 𝜇 > 0 it yields �̅� > 𝐶1, if 𝜇 < 0 it yields �̅� < 𝐶2. 

Totally the critical region has form �̅� ∈ (−∞;𝐶2) ∪ (𝐶1; +∞). We take 𝐶2 = −𝐶1 because in this 

case the length of the interval when 𝐻0 is accepted is maximum. So the critical area has a form 

|�̅�| > 𝐶. We find C from the equation 
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We have an equation 
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If |�̅�| > 𝐶 the hypothesis 𝐻0 is declined, otherwise it is accepted. 

The power of the test is 
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This value is a minimum for 𝜇 = 0, hence the power of the test is 1 − 𝛼.  
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