Answer on Question \#81193 - Math - Statistics and Probability

Question

For the following data

\mathbf{x}	0	1	2	3	4	5	6	7	8
\mathbf{f}	1	9	26	59	72	52	29	7	1

Calculate the quartiles Q_{1}, Q_{2}, and Q_{3}.

Solution

There is no common definition of quartiles and they can be selected in different ways. The Wikipedia article describes 3 methods to split off a set of data into four equal groups (quarters). First of all, the values must be sorted in ascending order (by finding the next larger value):

\mathbf{f}	1	9	26	59	72	52	29	7	1
	1								
	1	1							
	1	1	7						
\mathbf{S}	1	1	7	9	26	29	52	59	72

Suppose the median, or the second quartile Q_{2}, is defined as follows:

$$
Q_{2}(n=2 k+1)=(\mathrm{k}+1 \text {-th term }), Q_{2}(n=2 k)=(\mathrm{k} \text {-th term }) \div 2+(\mathrm{k}+1 \text {-th term }) \div 2 .
$$

Therefore, $Q_{2}=Q_{2}(S)=5$-th term $=26$. Now Q_{1} and Q_{3} can be calculated using the methods described there.

Method 1

\mathbf{S}	1	1	7	9		29	52	59	72

$Q_{1}=1 \div 2+7 \div 2=.5+3.5=4, Q_{3}=52 \div 2+59 \div 2=26+29.5=55.5$
Method 2

\mathbf{S}	1	1	7	9	26	29	52	59	72

$Q_{1}=7, Q_{3}=52$
Method 3

\mathbf{S}	1	1	7	9	26	29	52	59	72

$$
Q_{1}=1 \div 4 \times 3+7 \div 4=2.5, Q_{3}=52 \div 4+59 \div 4 \times 3=229 \div 4=57.25
$$

If Q_{1} is in $[1,7], Q_{2}$ is in [9,29], and Q_{3} is in [52,59], then about 25% of the values lie at or below Q_{1}, about 50% at or below Q_{2}, and about 75% at or below Q_{3}.

