ANSWER on Question \#81170 - Math - Abstract Algebra

QUESTION

Prove that if $G \neq\{e\}$ and G has no proper non-trivial subgroup, then G is finite and $o(G)$ is a prime number.

SOLUTION

Suppose by contradiction: If G has no nontrivial subgroups $\Rightarrow G$ is infinite or $|G| \neq p$. 1 case: G is infinite.

Let us prove that if G is an infinite group then G has infinitely many subgroups.

Proof. Let's consider the following set: $C=\{\langle g\rangle: g \in G\}$ - collection of all cyclic subgroups in G generated by elements of G. Two cases are possible:

1) There exist infinitely many distinct cyclic subgroups \Rightarrow We are done.
2) There exist finitely many distinct cyclic subgroups, for example $C=\left\{H_{1}, H_{2}, \ldots, H_{n}\right\}$. Then

$$
G=\bigcup_{i=1}^{n} H_{i}
$$

Since G is infinite then without loss of generality suppose that H_{1} is also infinite, where $H_{1}=\left\langle g_{1}\right\rangle$. Let's consider the following set $\left\{\left\langle g_{1}^{n}\right\rangle: n \in N\right\}$, the collection of all cyclic subgroups of $H_{1} \subset G$.

Let $K_{1}=\left\langle g_{1}\right\rangle, K_{2}=\left\langle g_{1}^{2}\right\rangle, K_{3}=\left\langle g_{1}^{3}\right\rangle, \ldots \ldots$.
It's easy to show that K_{n} and K_{m} are distinct for $n \neq m$. Indeed, without loss of generality take $n<m$ and taking $g_{1}^{n} \in K_{n}$ but $g_{1}^{n} \notin K_{m}$ otherwise $g_{1}^{n}=g_{1}^{m l}$, where $l \in Z \Rightarrow g_{1}^{n-m l}=e$ and since H_{1} is infinite \Rightarrow $n=m l$ which is a contradiction since $m>n$.

Thus, the subgroups K_{n} for any $n \in N$ are cyclic subgroups of $H_{1} \Rightarrow$ cyclic subgroups of G. Q.E.D.
2 case: $|G| \neq p$.
Suppose that $|G|=n$ where n is composite $\Rightarrow n=p m$ where p-prime and $m \geqslant 2$.
Let $a \in G$ such $a \neq e$ then $a^{p m}=e$.

1. If $a^{p} \neq e$ then considering the cyclic group of G, namely $H=\langle a p\rangle \Rightarrow 1<|H| \leqslant m<p m$ this is a contradiciton.
2. If $a^{p}=e$ then we know that $a \neq e$ and considering the cyclic subgroup of G, namely

$$
H=\langle a\rangle \Rightarrow 1<|H| \leqslant p<p m .
$$

So we get two contradiction and it follows that G is finite and its order is prime.
Q.E.D.

Answer provided by https://www.AssignmentExpert.com

