ANSWER on Question #81170 – Math – Abstract Algebra

QUESTION

Prove that if $G \neq \{e\}$ and G has no proper non-trivial subgroup, then G is finite and o(G) is a prime number.

SOLUTION

Suppose by contradiction: If G has no nontrivial subgroups \Rightarrow G is infinite or $|G| \neq p$.

1 case: G is infinite.

Let us prove that if G is an infinite group then G has infinitely many subgroups.

Proof. Let's consider the following set: $C = \{\langle g \rangle : g \in G\}$ - collection of all cyclic subgroups in G generated by elements of G. Two cases are possible:

1) There exist infinitely many distinct cyclic subgroups \Rightarrow We are done.

2) There exist finitely many distinct cyclic subgroups, for example $C = \{H_1, H_2, ..., H_n\}$. Then

$$G = \bigcup_{i=1}^{n} H_i$$

Since G is infinite then without loss of generality suppose that H_1 is also infinite, where $H_1 = \langle g_1 \rangle$. Let's consider the following set $\{\langle g_1^n \rangle : n \in N\}$, the collection of all cyclic subgroups of $H_1 \subset G$.

Let $K_1 = \langle g_1 \rangle$, $K_2 = \langle g_1^2 \rangle$, $K_3 = \langle g_1^3 \rangle$,

It's easy to show that K_n and K_m are distinct for $n \neq m$. Indeed, without loss of generality take n < m and taking $g_1^n \in K_n$ but $g_1^n \notin K_m$ otherwise $g_1^n = g_1^{ml}$, where $l \in Z \Rightarrow g_1^{n-ml} = e$ and since H_1 is infinite \Rightarrow n = ml which is a contradiction since m > n.

Thus, the subgroups K_n for any $n \in N$ are cyclic subgroups of $H_1 \Rightarrow$ cyclic subgroups of G. **Q.E.D.**

2 case:
$$|G| \neq p$$
.

Suppose that |G| = n where *n* is composite $\Rightarrow n = pm$ where *p* - prime and $m \ge 2$.

Let $a \in G$ such $a \neq e$ then $a^{pm} = e$.

- 1. If $a^p \neq e$ then considering the cyclic group of *G*, namely $H = \langle ap \rangle \Rightarrow 1 < |H| \leq m < pm$ this is a contradiciton.
- 2. If $a^p = e$ then we know that $a \neq e$ and considering the cyclic subgroup of G, namely $H = \langle a \rangle \Rightarrow 1 < |H| \leq p < pm.$

So we get two contradiction and it follows that G is finite and its order is prime.

Q.E.D.

Answer provided by https://www.AssignmentExpert.com