Answer on Question \#81169 - Math - Abstract Algebra

Question

How many Sylow 5-subgroups, Sylow 3-subgroups and Sylow 2-subgroups can a group of order 200 have? Give reasons for your answers.

Solution

Case $p=3$: Firstly, we write $|G|=200=2^{3} 5^{2}$. As order 3 does not divide order of G, there is no element of order 3. There is no 3-Sylow subgroup.

Case $\mathrm{p}=5$: Let P be a Sylow 5-subgoup of G. It exists by Sylow Theorem 1.

Let $N_{G}(P)$ be a normalizer of P and n_{5} be the number of 5-Sylow subgroups in G .

By Sylow Orbit-Stabilizer Theorem, $n_{5}=\left|G: N_{G}(P)\right|$.

By Sylow Theorem 3, $\left(n_{5}-1\right): 5$.

As $P \leq N_{G}(P),\left|N_{G}(P)\right| \vdots|P|$.

So, 25 divides $N_{G}(P)$ and possible values of $\left|G: N_{G}(P)\right|=|G|:\left|N_{G}(P)\right|=200:\left|N_{G}(P)\right|$ are 1, 2, 4, 8.

The only possibility is $n_{5}=1$. By the way, that provide as with $N_{G}(P)=G$ and P is normal in G .

Theorem (Sylow III). For each prime p, let n_{p} be the number of p-Sylow subgroups of G, $|G|=p^{k} m=5^{2} 2^{3}$, where $p=5$ doesn't divide $m=8$. Then $n_{p}=1 \bmod p=1 \bmod 5$ and $n_{p}\left|m, n_{p}\right| 8$.

The only possibility for $n_{p}=1$ mod 5 and $n_{p} \mid 8$ is $n_{p}=1$. There is one 5-Sylow subgroup.

Case $p=2$:

Let Q be a Sylow 2-subgoup of G and n_{2} number of 2-Sylow subgroups in G .

By Sylow Orbit-Stabalizer theorem, $n_{2}=\left|G: N_{G}(Q)\right|$.

As $Q \leq N_{G}(Q),\left|N_{G}(Q)\right|: 8$. Thus, possible values for n_{2} are $1,5,25$.

Construction for $\boldsymbol{n}_{2}=\mathbf{1}$: If G any Abelian group, i.e. cyclic group, then $\boldsymbol{n}_{2}=\mathbf{1}$.

Construction for $\boldsymbol{n}_{2}=\mathbf{2 5}$: Consider Dihedral group D_{25}, the group of symmetries of a regular 25-gon.

In a way similar as above, we can show that its Sylow 5-subgroup is normal. Hence, it is unique (corollary Sylow Theorem 2). Let's consider remaining elements. Their orders cannot have 5 as a divisor as all such elements are in a unique 5-Sylow subgroup. Thus, their order is 2 . There are
$\left|D_{25}\right|-25=25$ such elements. So, they are all conjugate to each other (also Sylow Theorem 2). So, there are 25 Sylow 2-subgroups in D_{25}.

Finally, consider $G=D_{25} \times \mathbb{Z}_{4}$. If P_{2} is a 2 - Sylow subgroup in $D_{25}, R:=P_{2} \times \mathbb{Z}_{4}$ is 2 - Sylow subgroup in G. Cardinal of orbit of R in G is the same as the cardinal of orbit of P_{2} inD D_{25}. This is true as the direct product of D_{25} and \mathbb{Z}_{4}. Thus, $\boldsymbol{n}_{2}=\mathbf{2 5}$ for G.

Construction for $\boldsymbol{n}_{2}=\mathbf{5}$: $G=D_{5} \times \mathbb{Z}_{20}$. Similar to case above, we show that D_{5} has 5 Sylow 2subgroups and so has G.

Answer: there is no 3-Sylow subgroup, there is only one 5-Sylow subgroup and the number of 2 -Sylow subgroup is one of numbers in the set $\{1,5,25\}$.

