Answer on Question #81169 – Math – Abstract Algebra

Question

How many Sylow 5-subgroups, Sylow 3-subgroups and Sylow 2-subgroups can a group of order 200 have? Give reasons for your answers.

Solution

<u>Case p=3</u>: Firstly, we write $|G| = 200 = 2^3 5^2$. As order 3 does not divide order of G, there is no element of order 3. There is no 3-Sylow subgroup.

<u>Case p=5:</u> Let P be a Sylow 5-subgoup of G. It exists by Sylow Theorem 1.

Let $N_G(P)$ be a normalizer of P and n_5 be the number of 5-Sylow subgroups in G.

By Sylow Orbit-Stabilizer Theorem, $n_5 = |G: N_G(P)|$.

By Sylow Theorem 3, $(n_5 - 1)$: 5.

As $P \leq N_G(P)$, $|N_G(P)| \vdots |P|$.

So, 25 divides $N_G(P)$ and possible values of $|G:N_G(P)| = |G|:|N_G(P)| = 200:|N_G(P)|$ are 1, 2, 4, 8.

The only possibility is $n_5 = 1$. By the way, that provide as with $N_G(P) = G$ and P is normal in G.

Theorem (Sylow III). For each prime p, let n_p be the number of p-Sylow subgroups of G, |G|=p^km=5²2³, where p=5 doesn't divide m=8. Then $n_p=1 \mod p=1 \mod 5$ and $n_p \mid m, n_p \mid 8$.

The only possibility for $n_p=1 \mod 5$ and $n_p \mid 8$ is $n_p=1$. There is one 5-Sylow subgroup.

Case p=2:

Let Q be a Sylow 2-subgoup of G and n_2 number of 2-Sylow subgroups in G.

By Sylow Orbit-Stabalizer theorem, $n_2 = |G: N_G(Q)|$.

As $Q \leq N_G(Q)$, $|N_G(Q)| \stackrel{!}{:} 8$. Thus, possible values for n_2 are 1, 5, 25.

Construction for $n_2 = 1$: If G any Abelian group, i.e. cyclic group, then $n_2=1$.

Construction for $n_2 = 25$: Consider Dihedral group D_{25} , the group of symmetries of a regular 25-gon.

In a way similar as above, we can show that its Sylow 5-subgroup is normal. Hence, it is unique (corollary Sylow Theorem 2). Let's consider remaining elements. Their orders cannot have 5 as a divisor as all such elements are in a unique 5-Sylow subgroup. Thus, their order is 2. There are

 $|D_{25}| - 25 = 25$ such elements. So, they are all conjugate to each other (also Sylow Theorem 2). So, there are 25 Sylow 2-subgroups in D_{25} .

Finally, consider $G = D_{25} \times \mathbb{Z}_4$. If P_2 is a 2 - Sylow subgroup in D_{25} , $R \coloneqq P_2 \times \mathbb{Z}_4$ is 2 - Sylow subgroup in G. Cardinal of orbit of R in G is the same as the cardinal of orbit of P_2 in D_{25} . This is true as the direct product of D_{25} and \mathbb{Z}_4 . Thus, $n_2 = 25$ for G.

Construction for $n_2 = 5$: $G = D_5 \times \mathbb{Z}_{20}$. Similar to case above, we show that D_5 has 5 Sylow 2-subgroups and so has G.

Answer: there is no 3-Sylow subgroup, there is only one 5-Sylow subgroup and the number of 2-Sylow subgroup is one of numbers in the set {1, 5, 25}.