Answer on Question \#81145 - Math - Linear Algebra

Question

Consider the linear operator $T: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3}$, defined by $T\left(z_{1}, z_{2}, z_{3}\right)=$ $=\left(z_{1}-i z_{2}, i z_{1}+2 z_{2}+i z_{3},-i z_{2}+z_{3}\right)$.
i) Compute T^{*} and check whether T is selfadjoint.
ii) Check whether T is unitary.

Solution

i) Given the rules

$$
\begin{aligned}
& z_{1} \rightarrow z_{1}-i z_{2}=w_{1} \\
& z_{2} \rightarrow i z_{1}+2 z_{2}+i z_{3}=w_{2} \\
& z_{3} \rightarrow-i z_{2}+z_{3}=w_{3} \\
& w=T z
\end{aligned}
$$

For linear operator T the matrix representation is

$$
T=\left[\begin{array}{ccc}
1 & -i & 0 \\
i & 2 & i \\
0 & -i & 1
\end{array}\right]
$$

We recall, that an operator T^{*} is called adjoint for the linear operator T if for all $x, y \in \mathbb{C}^{3}(T x, y)=\left(x, T^{*} y\right)$. The matrix representation for T^{*} can be found as

$$
T^{*}=(\overline{\mathrm{T}})^{T}=\overline{\left(T^{T}\right)}
$$

where A^{T} denotes the transpose and \bar{A} denotes the matrix with complex conjugated entries.
In our case

$$
T^{*}=\left[\begin{array}{ccc}
1 & -i & 0 \\
i & 2 & i \\
0 & -i & 1
\end{array}\right]=T
$$

The adjoint operator $T^{*}\left(z_{1}, z_{2}, z_{3}\right)=\left(z_{1}-i z_{2}, i z_{1}+2 z_{2}+i z_{3}, i z_{2}+z_{3}\right)$.
Therefore, T is selfadjoint.
ii) A unitary operator is a bounded linear operator on a Hilbert space that satisfies $U^{*} U=U U^{*}=I$ where U^{*} is the adjoint of U.

$$
T \cdot T^{*}=\left[\begin{array}{ccc}
1 & -i & 0 \\
i & 2 & i \\
0 & -i & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
1 & -i & 0 \\
i & 2 & i \\
0 & -i & 1
\end{array}\right]=
$$

$$
=\left[\begin{array}{lll}
1(1)-i(i)+0(0) & 1(-i)-i(2)+0(-i) & 1(0)-i(i)+0(1) \\
i(1)+2(i)+i(0) & i(-i)+2(2)+i(-i) & i(0)+2(i)+i(1) \\
0(1)-i(i)+1(0) & 0(-i)-i(2)+1(-i) & 0(0)-i(i)+1(1)
\end{array}\right]=
$$

$$
=\left[\begin{array}{ccc}
2 & -3 i & 1 \\
3 i & 6 & 3 i \\
1 & -3 i & 2
\end{array}\right] \neq I_{3}
$$

Therefore, T is not unitary.

Answer:

i) T is selfadjoint.
ii) T is not unitary.

