Answer on Question \#81142 - Math - Linear Algebra

Question

Complete the set $\mathrm{S}=\{\mathrm{x}$
$3+x$
$2+1$, x
$2+x+1, x+1\}$ to get a basis of P3

Solution

Denote
$a_{1}=x^{3}+x^{2}+1, a_{2}=x^{2}+x+1, a_{3}=x+1$.
Let's check the hypothesis that a_{1}, a_{2}, a_{3} and $a_{4}=1$ form a basis in P_{3}. We have to check whether $c_{1} a_{1}+c_{2} a_{2}+c_{3} a_{3}+c_{4} a_{4}=0$
yields
$c_{1}=c_{2}=c_{3}=c_{4}=0$.
We have
$c_{1}\left(x^{3}+x^{2}+1\right)+c_{2}\left(x^{2}+x+1\right)+c_{3}(x+1)+c_{4} \cdot 1=0$
This means
$c_{1} x^{3}+\left(c_{1}+c_{2}\right) x^{2}+\left(c_{2}+c_{3}\right) x+\left(c_{1}+c_{2}+c_{3}+c_{4}\right)=0$.
Then

$$
\left\{\begin{array}{l}
c_{1}=0 \\
c_{1}+c_{2}=0 \\
c_{2}+c_{3}=0 \\
c_{1}+c_{2}+c_{3}+c_{4}=0
\end{array}\right.
$$

from which
$c_{1}=0, c_{2}=-c_{1}=0, c_{3}=-c_{2}=0, c_{4}=-c_{1}-c_{2}-c_{3}=0$.
This means that $a_{1}, a_{2}, a_{3}, a_{4}$ really form a basis in P_{3}.
Answer: 1 should be added, the basis of P_{3} is $\left\{x^{3}+x^{2}+1, x^{2}+x+1, x+1,1\right\}$.

