## ANSWER on Question \#81130 - Math - Linear Algebra

## QUESTION

Which of the following are binary operations on $S=\{x \in \mathbb{R} \mid x>0\}$ ? Justify your answer.
i) The operation $\Delta$ defined by $x \Delta y=|\ln (x y)|$ where $\ln (x)$ is the natural logarithm.
ii) The operation $\Delta$ defined by $x \Delta y=x^{2}+y^{3}$. Also, for those operations which are binary operations, check whether they are associative or commutative.

## SOLUTION

First, let us recall the definition of a binary operation.

A binary operation on a set $S$ is a map which sends elements of the Cartesian product $S \times S$ to $S$ :

$$
\Delta: S \times S \rightarrow S
$$

that is, a binary operation, it is an operation that takes any two elements $x$ and $y$ from the set $S$, does something with them (depends on the definition), and produces the third number $c$, which must be in the set $S$.
( More information: https://en.wikipedia.org/wiki/Binary operation )
Next we recall the definition of associativity and commutativity.
A binary operation $\Delta$ on a set $S$ is called associative if it satisfied the associative law:

$$
(x \Delta y) \Delta z=x \Delta(y \Delta z), \quad \forall x, y, z \in S
$$

( More information: https://en.wikipedia.org/wiki/Associative property)

A binary operation $\Delta$ on a set $S$ is called commutative if:

$$
x \Delta y=y \Delta x, \quad \forall x, y \in S
$$

( More information: https://en.wikipedia.org/wiki/Commutative property)

Now we turn to the solution of the problem.
i)

$$
x \Delta y=|\ln (x y)|
$$

This is not a binary operation. If we choose $x=y=1>0$, then,

$$
1 \Delta 1=|\ln (1 \cdot 1)|=|\ln (1)|=|0|=0 \ngtr 0
$$

Conclusion,

$$
x \Delta y=|\ln (x y)| \text { is not a binary operation for } S=\{x \in \mathbb{R} \mid x>0\}
$$

ii)

$$
x \Delta y=x^{2}+y^{3}
$$

As we know

$$
x, y \in S \rightarrow\left\{\begin{array} { l } 
{ x > 0 } \\
{ y > 0 }
\end{array} \rightarrow \left\{\begin{array}{l}
x^{2}>0 \\
y^{3}>0
\end{array} \rightarrow x^{2}+y^{3}>0\right.\right.
$$

Conclusion,

$$
x \Delta y=x^{2}+y^{3} \text { is a binary operation for } S=\{x \in \mathbb{R} \mid x>0\}
$$

Associative:

$$
\begin{gathered}
\begin{array}{c}
(x \Delta y) \Delta z=(x \Delta y)^{2}+z^{3}=\left(x^{2}+y^{3}\right)^{2}+z^{3}=\left[\begin{array}{c}
\text { We use the binomial formula } \\
(a+b)^{2}=a^{2}+2 a b+b^{2}
\end{array}\right]= \\
=\left(\left(x^{2}\right)^{2}+2 \cdot x^{2} \cdot y^{3}+\left(y^{3}\right)^{2}\right)+z^{3}=x^{4}+2 x^{2} y^{3}+y^{6}+z^{3} \\
(x \Delta y) \Delta z=x^{4}+2 x^{2} y^{3}+y^{6}+z^{3}
\end{array} \\
x \Delta(y \Delta z)=x^{2}+(y \Delta z)^{3}=x^{2}+\left(y^{2}+z^{3}\right)^{3}=\left[\begin{array}{c}
\text { We use the binomial formula } \\
(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}
\end{array}\right]= \\
=x^{2}+\left(\left(y^{2}\right)^{3}+3 \cdot\left(y^{2}\right)^{2} \cdot z^{3}+3 \cdot y^{2} \cdot\left(z^{3}\right)^{2}+\left(z^{3}\right)^{3}\right)=x^{2}+y^{6}+3 y^{4} z^{3}+3 y^{2} z^{6}+z^{9} \\
x \Delta(y \Delta z)=x^{2}+y^{6}+3 y^{4} z^{3}+3 y^{2} z^{6}+z^{9}
\end{gathered}
$$

Then,

$$
\left\{\begin{array}{c}
(x \Delta y) \Delta z=x^{4}+2 x^{2} y^{3}+y^{6}+z^{3} \\
x \Delta(y \Delta z)=x^{2}+y^{6}+3 y^{4} z^{3}+3 y^{2} z^{6}+z^{9}
\end{array} \rightarrow(x \Delta y) \Delta z \neq x \Delta(y \Delta z)\right.
$$

Conclusion,

$$
x \Delta y=x^{2}+y^{3} \text { is not an associative binary operation }
$$

Commutative:

$$
\left\{\begin{array}{l}
x \Delta y=x^{2}+y^{3} \\
y \Delta x=y^{2}+x^{3}
\end{array} \rightarrow x \Delta y \neq y \Delta z\right.
$$

Conclusion,

$$
x \Delta y=x^{2}+y^{3} \text { is not a commutative binary operation }
$$

## ANSWER

i)

$$
x \Delta y=|\ln (x y)| \text { is not a binary operation for } S=\{x \in \mathbb{R} \mid x>0\}
$$

ii)

$$
\begin{gathered}
x \Delta y=x^{2}+y^{3} \text { is a binary operation for } S=\{x \in \mathbb{R} \mid x>0\} \\
x \Delta y=x^{2}+y^{3} \text { is not an associative binary operation }
\end{gathered}
$$

$x \Delta y=x^{2}+y^{3}$ is not a commutative binary operation.

