Answer on Question \#81122 - Math - Calculus

Question

$f(x)=x^{3}+3, a=6$. Evaluate $f^{\prime}(a)$.

Solution

By the definition of the derivative of the function at the point $x=a$ we have

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

Here $a=6$, so we get

$$
f^{\prime}(6)=\lim _{h \rightarrow 0} \frac{f(6+h)-f(6)}{h}
$$

Note that

$$
\begin{aligned}
& f(6)=6^{3}+3 \\
& f(6+h)=(6+h)^{3}+3 \\
& f(6+h)-f(6)=(6+h)^{3}+3-\left(6^{3}+3\right)=(6+h)^{3}+3-6^{3}-3=(6+h)^{3}-6^{3}
\end{aligned}
$$

$$
\text { Using } u^{3}-v^{3}=(u-v)\left(u^{2}+u v+v^{2}\right) \text { we get }
$$

$$
(6+h)^{3}-6^{3}=(6+h-6)\left((6+h)^{2}+6(6+h)+6^{2}\right)=h\left((6+h)^{2}+6(6+h)+6^{2}\right), \text { so }
$$

$$
f(6+h)-f(h)=h\left((6+h)^{2}+6(6+h)+6^{2}\right) \text { and }
$$

$$
f^{\prime}(6)=\lim _{h \rightarrow 0} \frac{f(6+h)-f(6)}{h}=
$$

$$
=\lim _{h \rightarrow 0} \frac{\not h\left((6+h)^{2}+6(6+h)+6^{2}\right)}{h}=\lim _{h \rightarrow 0}\left((6+h)^{2}+6(6+h)+6^{2}\right)=\left[\begin{array}{l}
(6+h)^{2} \rightarrow 36 \text { as } h \rightarrow 0 \\
6(6+h) \rightarrow 36 \text { as } h \rightarrow 0 \\
6^{2} \rightarrow 36 \text { as } h \rightarrow 0
\end{array}\right]=
$$

$$
=36+36+36=108
$$

Answer: 108.

