Answer on Question \#81052 - Math - Calculus

Confirm that f and g are inverses by showing that $\mathrm{f}(\mathrm{g}(\mathrm{x}))=\mathrm{x}$ and $\mathrm{g}(\mathrm{f}(\mathrm{x}))=\mathrm{x}$.

$$
f(x)=x^{2}-3 \text { AND } g(x)=\sqrt{3+x}
$$

The answer:

First, let us consider $f(g(x))$. As $g(x)=\sqrt{3+x}$ then we should consider only $x>-3$

$$
\begin{equation*}
f(g(x))=(\sqrt{3+x})^{2}-3=3+x-3=x \tag{1}
\end{equation*}
$$

for any value x, so $f(x)$ is inverse to $g(x)$.
Let us consider $g(f(x))$. First let us check whether $f(x)$ is a one-to-one function. By definition A function F is one-to-one if it never takes the same value twice. So we should consider two regions: $x \geq \sqrt{3}$ and $x<\sqrt{3}$ where $f(x)$ is a one-to-one function.

$$
\begin{equation*}
g(f(x))=\sqrt{3+\left(x^{2}-3\right)}=|x| \tag{2}
\end{equation*}
$$

As we specified above the function f has two regions where it is a one-to-one function: $x \geq \sqrt{3}$ or $x<\sqrt{3}$. Therefore, requiring $g(f(x))=x$ one has got a region where the functions f and g are inverse: "The functions f and g are inverse for $x \geq 3$ ".

