ANSWER on Question \#80976 - Math - Combinatorics | Number Theory QUESTION

1. Theorem. Let a, b and c be integers with a and b not both 0 . If $x=x_{0}, y=y_{0}$ is an integer solution to the equation $a x+b y=c$ that is, $a x_{0}+b y_{0}=c$, then for every integer k, the numbers $x=x_{0}+k b(a, b)$ and $y=y_{0}-k a(a, b)$ are integers that also satisfy the linear Diophantine equation $a x+b y=c$. Moreover, every solution to the linear Diophantine equation $a x+b y=c$ is of this form.
2. Exercise Find all integer solutions to the equation $24 x+9 y=33$.
3. Theorem. Let a and b be integers with $a, b>0$. Then $\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b)=a b$.

SOLUTION

1. Let we know that $x=x_{0}, y=y_{0}$ is an integer solution to the equation $a x+b y=c$. Then,

$$
a x_{0}+b y_{0}=c
$$

Consider the system of equations

$$
\begin{aligned}
& \left\{\begin{array}{c}
a x_{0}+b y_{0}=c \\
a x+b y=c
\end{array} \rightarrow a x_{0}+b y_{0}=a x+b y \rightarrow a x_{0}-a x=b y-b y_{0} \rightarrow\right. \\
& \quad a \cdot\left(x_{0}-x\right)=b \cdot\left(y-y_{0}\right) \left\lvert\, \div(a b) \rightarrow \underbrace{\frac{x_{0}-x}{b}}_{f(x)}=\underbrace{\frac{y-y_{0}}{a}}_{g(y)}\right.
\end{aligned}
$$

We have obtained an equation where the function $f(x)$ on the left-hand side and $g(y)$ on the right-hand side. These are functions of various independent variables x, y. Since this equation must be satisfied for all values of x, y, these functions can only be constants $-k$. Then,

$$
\frac{x_{0}-x}{b}=-k=\frac{y-y_{0}}{a} \rightarrow\left\{\begin{array} { l }
{ x _ { 0 } - x = - k b } \\
{ y - y _ { 0 } = - k a }
\end{array} \rightarrow \left\{\begin{array}{l}
x=x_{0}+k b \\
y=y_{0}-k a
\end{array}\right.\right.
$$

Q.E.D.

2.

$$
24 x+9 y=33
$$

1 STEP: Let us find a particular solution of the given Diophantine equation.
Let us check that a pair of numbers $x_{0}=1$ and $y_{0}=1$ is a solution of the given equation:

$$
24 \cdot 1+9 \cdot 1=3
$$

2 STEP: We use the result of the theorem from part (1)

$$
\left\{\begin{array} { c }
{ 2 4 x + 9 y = 3 } \\
{ x _ { 0 } = 1 } \\
{ y _ { 0 } = 1 }
\end{array} \rightarrow \left\{\begin{array}{c}
x=1+9 k \\
y=1-24 k \\
k \in \mathbb{Z}
\end{array}\right.\right.
$$

3.

First we prove an auxiliary lemma.
Lemma: If $m>0, \operatorname{lcm}(m a, m b)=m \cdot \operatorname{lcm}(a, b)$.
Since $\operatorname{lcm}(m a, m b)$ is a multiple of $m a$, which is a multiple of m, we have $m \mid l c m(m a, m b)$.
Let $m h_{1}=\operatorname{lcm}(m a, m b)$, and set $h_{2}=\operatorname{lcm}(a, b)$. Then $m a\left|m h_{1} \Rightarrow a\right| h_{1}$ and $m b\left|m h_{1} \Rightarrow b\right| h_{1}$. That says h_{1} is a common multiple of a and b; but h_{2} is the least common multiple, so $h_{1} \geq h_{2}$.

Next, $a\left|h_{2} \Rightarrow a m\right| m h_{2}$ and $b\left|h_{2} \Rightarrow b m\right| m h_{2}$. Since $m h_{2}$ is a common multiple of $m a$ and $m b$, and $m h_{1}=\operatorname{lcm}(m a, m b)$, we have $m h_{2} \geq m h_{1}$, i.e. $h_{2} \geq h_{1}$.

Then,

$$
\left\{\begin{array}{l}
h_{1} \geq h_{2} \\
h_{2} \geq h_{1}
\end{array} \rightarrow h_{1}=h_{2}\right.
$$

Therefore, $\operatorname{lcm}(m a, m b)=m h_{1}=m h_{2}=m \cdot \operatorname{lcm}(a, b)$; proving the Lemma.

Conclusion of Proof of Theorem: Let $g=g c d(a, b)$. Since $g|a, g| b$, let $a=g c$ and $b=g d$.

From a result in the text,

$$
\operatorname{gcd}(c, d)=\operatorname{gcd}\left(\frac{a}{g}, \frac{b}{g}\right)=1
$$

Now we will prove that $l c m(c, d)=c d$. Since $c \mid l c m(c, d)$, let $l c m(c, d)=k c$. Since $d \mid k c$ and $g c d(c, d)=1$, $d \mid k$ and so $d c \leq k c$. However, $k c$ is the least common multiple and $d c$ is a common multiple, so $k c \leq d c$. Hence $k c=d c$, i.e. $\operatorname{lcm}(c, d)=c d$. Finally, using the Lemma and $l c m(c, d)=c d$, we have:

$$
\operatorname{lcm}(a, b) \cdot \operatorname{gcd}(a, b)=\operatorname{lcm}(g c, g d) \cdot g=g \cdot \operatorname{lcm}(c, d) \cdot g=g c d g=(g c)(g d)=a b
$$

Q.E.D.

