Answer on Question \#80967 - Math - Differential Equations

Question

$2 x+1)^{\wedge} 2 d^{\wedge} 2 y / d x^{\wedge} 2-2(2 x+1) d y / d x-12 y=6 x$ solve by taking substitution $(2 x+1)=e^{\wedge} t$

Solution

Consider

$$
2 x+1=e^{t}
$$

We can calculate x, t and the corresponding derivatives as

$$
\begin{gathered}
x=\frac{e^{t}-1}{2} \\
t=\log (2 \mathrm{x}+1) \\
\frac{d t}{d x}=\log (2 \mathrm{x}+1)^{\prime}=\frac{2}{2 x+1} \\
\frac{d^{2} t}{d x^{2}}=\log (2 \mathrm{x}+1)^{\prime \prime}=\frac{-4}{(2 x+1)^{2}} \\
\frac{d y}{d x}=\frac{d y}{d t} \frac{d t}{d x}=\frac{2}{2 x+1} \frac{d y}{d t} \\
\frac{d^{2} y}{d x^{2}}=\frac{d^{2} t}{d x^{2}} \frac{d y}{d t}+\left(\frac{d t}{d x}\right)^{2} \frac{d^{2} y}{d t^{2}}=\frac{-4}{(2 x+1)^{2}} \frac{d y}{d t}+\frac{4}{(2 x+1)^{2}} \frac{d^{2} y}{d t^{2}}
\end{gathered}
$$

Then the initial equation can be written as:

$$
\begin{gathered}
e^{2 t}\left(\frac{-4}{e^{2 t}} \frac{d y}{d t}+\frac{4}{e^{2 t}} \frac{d^{2} y}{d t^{2}}\right)-2 e^{t} \frac{2}{e^{t}} \frac{d y}{d t}-12 y=3 e^{t}-3 \\
4 \frac{d^{2} y}{d t^{2}}-8 \frac{d y}{d t}-12 y=3 e^{t}-3
\end{gathered}
$$

The general solution for this equation will be the sum of the complementary solution and a particular solution.
We find the complementary solution by solving

$$
4 \frac{d^{2} y}{d t^{2}}-8 \frac{d y}{d t}-12 y=0
$$

Let's assume a solution will be proportional to $e^{a t}$ for some constant a Substitute $y=e^{a t} \quad$ into the differential equation:

$$
\begin{gathered}
4 \frac{d^{2}\left(e^{a t}\right)}{d t^{2}}-8 \frac{d\left(e^{a t}\right)}{d t}-12\left(e^{a t}\right)=0 \\
4 a^{2} e^{a t}-8 a e^{a t}-12 e^{a t}=0
\end{gathered}
$$

Since $e^{a t} \neq 0$ for any finite a, the zeros must come from the polynomial:

$$
4 a^{2}-8 a-12=0
$$

Factor

$$
4(a-3)(a+1)=0
$$

Thus, the roots are
$a_{2}=3$
The root $a_{1}=-1$ gives $y_{1}=C_{1} e^{-t} \quad$ as a solution, where C_{1} is an arbitrary constant.
The root $a_{2}=3$ gives $y_{2}=C_{2} e^{3 t}$ as a solution, where C_{2} is an arbitrary constant The general solution is the sum of the above solutions:

$$
y=C_{1} e^{-t}+C_{2} e^{3 t}
$$

We determine a particular solution to $4 \frac{d^{2} y}{d t^{2}}-8 \frac{d y}{d t}-12 y=3 e^{t}-3$ by the method of undetermined coefficients:
A particular solution will be the sum of particular solutions to $4 \frac{d^{2} y}{d t^{2}}-8 \frac{d y}{d t}-12 y=-3$ and $4 \frac{d^{2} y}{d t^{2}}-8 \frac{d y}{d t}-12 y=3 e^{t}$
A particular solution to $4 \frac{d^{2} y}{d t^{2}}-8 \frac{d y}{d t}-12 y=-3$ is of the form $y_{3}=b_{1}$
A particular solution to $4 \frac{d^{2} y}{d t^{2}}-8 \frac{d y}{d t}-12 y=3 e^{t}$ is of the form $y_{4}=b_{2} e^{t}$
Thus, the total particular solution can be found as

$$
y_{p}=b_{1}+b_{2} e^{t}
$$

Substituting

$$
4 \frac{d^{2} y_{p}}{d t^{2}}-8 \frac{d y_{p}}{d t}-12 y_{p}=3 e^{t}-3
$$

We get

$$
4 b_{2} e^{t}-8 b_{2} e^{t}-12\left(\mathrm{~b}_{1}+b_{2} e^{t}\right)=3 e^{t}-3
$$

Simplifying

$$
-12 b_{1}-16 b_{2} e^{t}=-3+3 e^{t}
$$

Equating the coefficients before the corresponding powers of e^{t} we get
$-12 b_{1}=-3$
$-16 b_{2}=3$

So

$b_{1}=1 / 4$
$b_{2}=\frac{-3}{16}$
Now substituting to y_{p} we get

$$
y_{p}=\frac{1}{4}-\frac{3}{16} e^{t}
$$

Now the general solution can be found as

$$
y=C_{1} e^{-t}+C_{2} e^{3 t}+\frac{1}{4}-\frac{3}{16} e^{t}
$$

Now substituting $e^{t}=2 x+1$ we get

$$
y=\frac{C_{1}}{2 x+1}+C_{2}(2 x+1)^{3}+\frac{1}{4}-\frac{3}{16}(2 x+1)
$$

