

ANSWER on Question #80949 – Math – Combinatorics | Number Theory

QUESTION

1. Theorem. Let a, b and c be integers with a and b not both 0. If $x = x_0, y = y_0$ is an integer solution to the equation $ax + by = c$ that is, $ax_0 + by_0 = c$, then for every integer k , the numbers $x = x_0 + kb$ (a, b) and $y = y_0 - ka$ (a, b) are integers that also satisfy the linear Diophantine equation $ax + by = c$. Moreover, every solution to the linear Diophantine equation $ax + by = c$ is of this form.

2. Exercise Find all integer solutions to the equation $24x + 9y = 33$.

3. Theorem. Let a and b be integers with $a, b > 0$. Then $\gcd(a, b) \cdot \text{lcm}(a, b) = ab$.

SOLUTION

1. Let we know that $x = x_0, y = y_0$ is an integer solution to the equation $ax + by = c$. Then,

$$ax_0 + by_0 = c$$

Consider the system of equations

$$\begin{cases} ax_0 + by_0 = c \\ ax + by = c \end{cases} \rightarrow ax_0 + by_0 = ax + by \rightarrow ax_0 - ax = by - by_0 \rightarrow a \cdot (x_0 - x) = b \cdot (y - y_0) \mid \div (ab) \rightarrow \boxed{\frac{x_0 - x}{b} = \frac{y - y_0}{a}}$$

We have obtained an equation where the function $f(x)$ on the left-hand side and $g(y)$ on the right-hand side. These are functions of various independent variables x, y . Since this equation must be satisfied for all values of x, y , these functions can only be constants $-k$. Then,

$$\frac{x_0 - x}{b} = -k = \frac{y - y_0}{a} \rightarrow \begin{cases} x_0 - x = -kb \\ y - y_0 = -ka \end{cases} \rightarrow \boxed{\begin{cases} x = x_0 + kb \\ y = y_0 - ka \end{cases}}$$

Q.E.D.

2.

$$24x + 9y = 33$$

1 STEP: Let us find a particular solution of the given Diophantine equation.

Let us check that a pair of numbers $x_0 = 1$ and $y_0 = 1$ is a solution of the given equation:

$$24 \cdot 1 + 9 \cdot 1 = 33$$

2 STEP: We use the result of the theorem from part (1)

$$\begin{cases} 24x + 9y = 3 \\ x_0 = 1 \\ y_0 = 1 \end{cases} \rightarrow \boxed{\begin{cases} x = 1 + 9k \\ y = 1 - 24k \\ k \in \mathbb{Z} \end{cases}}$$

3.

First we prove an auxiliary lemma.

Lemma: If $m > 0$, $\text{lcm}(ma, mb) = m \cdot \text{lcm}(a, b)$.

Since $\text{lcm}(ma, mb)$ is a multiple of ma , which is a multiple of m , we have $m \mid \text{lcm}(ma, mb)$.

Let $mh_1 = \text{lcm}(ma, mb)$, and set $h_2 = \text{lcm}(a, b)$. Then $ma \mid mh_1 \Rightarrow a \mid h_1$ and $mb \mid mh_1 \Rightarrow b \mid h_1$. That says h_1 is a common multiple of a and b ; but h_2 is the least common multiple, so $h_1 \geq h_2$.

Next, $a \mid h_2 \Rightarrow am \mid mh_2$ and $b \mid h_2 \Rightarrow bm \mid mh_2$. Since mh_2 is a common multiple of ma and mb , and

$mh_1 = \text{lcm}(ma, mb)$, we have $mh_2 \geq mh_1$, i.e. $h_2 \geq h_1$.

Then,

$$\begin{cases} h_1 \geq h_2 \\ h_2 \geq h_1 \end{cases} \rightarrow h_1 = h_2$$

Therefore, $\text{lcm}(ma, mb) = mh_1 = mh_2 = m \cdot \text{lcm}(a, b)$; proving the Lemma.

Conclusion of Proof of Theorem: Let $g = \gcd(a, b)$. Since $g|a$, $g|b$, let $a = gc$ and $b = gd$.

From a result in the text,

$$\gcd(c, d) = \gcd\left(\frac{a}{g}, \frac{b}{g}\right) = 1$$

Now we will prove that $\text{lcm}(c, d) = cd$. Since $c|\text{lcm}(c, d)$, let $\text{lcm}(c, d) = kc$. Since $d|kc$ and $\gcd(c, d) = 1$, $d|k$ and so $dc \leq kc$. However, kc is the least common multiple and dc is a common multiple, so $kc \leq dc$. Hence $kc = dc$, i.e. $\text{lcm}(c, d) = cd$. Finally, using the Lemma and $\text{lcm}(c, d) = cd$, we have:

$$\text{lcm}(a, b) \cdot \gcd(a, b) = \text{lcm}(gc, gd) \cdot g = g \cdot \text{lcm}(c, d) \cdot g = \gcd(g)(gd) = (gc)(gd) = ab$$

Q.E.D.