Answer on Question \#80925 - Math - Linear Algebra

Question

Verify that W is a subspace of V. Assume that V has the standard operations.
$W=\left\{\left(x_{1}, x_{2}, x_{3}, 0\right)\right\}$, where x_{1}, x_{2}, x_{3} are real numbers. $V=\mathbb{R}^{4}$.

Solution

W is a subspace, if the following three conditions are satisfied:

1) W is non-empty (the zero vector is in W).
2) W is closed under addition: if \vec{u} and \vec{w} are in W, then $\vec{u}+\vec{w}$ is in W.
3) W is closed under scalar multiplication: if \vec{u} is in W, and c is a scalar, then $c \vec{u} \in W$.
4) W is non-empty because it contains the zero vector $(0,0,0,0)$.
5) Let $\vec{u}=\left(u_{1}, u_{2}, u_{3}, 0\right)$ and $\vec{w}=\left(w_{1}, w_{2}, w_{3}, 0\right)$ be two vectors in W. Show that W is closed under addition
$\vec{u}+\vec{w}=\left(u_{1}, u_{2}, u_{3}, 0\right)+\left(w_{1}, w_{2}, w_{3}, 0\right)=\left(u_{1}+w_{1}, u_{2}+w_{2}, u_{3}+w_{3}, 0\right)=$ $=\left(x_{1}, x_{2}, x_{3}, 0\right)$
where $x_{1}=u_{1}+w_{1}, x_{2}=u_{2}+w_{2}$ and $x_{3}=u_{3}+w_{3}$ are real numbers.
Hence, $\vec{u}+\vec{w}$ is in W.
6) Let $\vec{u}=\left(u_{1}, u_{2}, u_{3}, 0\right)$ be a vector in W, and let c be any real number. Show that W is closed under scalar multiplication
$\overrightarrow{c u}=c\left(u_{1}, u_{2}, u_{3}, 0\right)=\left(c u_{1}, c u_{2}, c u_{3}, 0\right)=\left(x_{1}, x_{2}, x_{3}, 0\right)$
where $x_{1}=c u_{1}, x_{2}=c u_{2}$ and $x_{3}=c u_{3}$ are real numbers.
Hence, $c \vec{u}$ is in W.
Finally, because all three conditions are satisfied, we can conclude that W is a subspace of \mathbb{R}^{4}.
