Answer on Question #80925 – Math – Linear Algebra

Question

Verify that *W* is a subspace of *V*. Assume that *V* has the standard operations.

 $W = \{(x_1, x_2, x_3, 0)\}$, where x_1, x_2, x_3 are real numbers. $V = \mathbb{R}^4$.

Solution

W is a subspace, if the following three conditions are satisfied:

1) *W* is non-empty (the zero vector is in *W*).

2) W is closed under addition: if \vec{u} and \vec{w} are in W, then $\vec{u} + \vec{w}$ is in W.

3) *W* is closed under scalar multiplication: if \vec{u} is in *W*, and *c* is a scalar, then $c\vec{u} \in W$.

1) W is non-empty because it contains the zero vector (0, 0, 0, 0).

2) Let $\vec{u} = (u_1, u_2, u_3, 0)$ and $\vec{w} = (w_1, w_2, w_3, 0)$ be two vectors in *W*. Show that *W* is closed under addition $\vec{u} + \vec{w} = (u_1, u_2, u_3, 0) + (w_1, w_2, w_3, 0) = (u_1 + w_1, u_2 + w_2, u_3 + w_3, 0) = (x_1, x_2, x_3, 0)$ where $x_1 = u_1 + w_1, x_2 = u_2 + w_2$ and $x_3 = u_3 + w_3$ are real numbers. Hence, $\vec{u} + \vec{w}$ is in *W*.

3) Let $\vec{u} = (u_1, u_2, u_3, 0)$ be a vector in *W*, and let *c* be any real number. Show that *W* is closed under scalar multiplication $\vec{cu} = c(u_1, u_2, u_3, 0) = (cu_1, cu_2, cu_3, 0) = (x_1, x_2, x_3, 0)$ where $x_1 = cu_1, x_2 = cu_2$ and $x_3 = cu_3$ are real numbers. Hence, \vec{cu} is in *W*.

Finally, because all three conditions are satisfied, we can conclude that W is a subspace of \mathbb{R}^4 .