Answer to Question \#80892-Math / Abstract Algebra

Question. Let p be a prime and $a \in \mathbb{N}$ such that $p \mid a^{50}$. Show that $p^{50} \mid a^{50}$.

Answer. We will prove a more general statement: for every non-zero $n \in \mathbb{N}$, if $p \mid a^{n}$, then $p^{n} \mid a^{n}$. Applying this statement with $n=50$ gives the desired statement. This more general statement will be proved in two stages as follows.

- We will prove that if $p \mid a^{n}$, then $p \mid a$. The proof is by induction.
- Induction base with $n=1$. Assume that $p \mid a^{1}$. It is the same as $p \mid a$ because $a^{1}=a$.
- Induction step. Let $n \in \mathbb{N}$ be non-zero. Assume that $p \mid a^{n}$ implies $p \mid a$. Assume that $p \mid a^{n+1}$. We have that $p \mid a^{n} a$, then as p is prime, by Euclid's lemma, $p \mid a^{n}$ or $p \mid a$.
* If $p \mid a^{n}$, then $p \mid a$ by the induction hypothesis.
* If $p \mid a$, there is nothing to prove.

We considered all cases, and $p \mid a$ is true in all cases.

- We will prove that if $p \mid a$, then $p^{n} \mid a^{n}$. Assume that $p \mid a$. The proof is by induction.
- Induction base with $n=1$. We have $p^{1} \mid a^{1}$ by the assumption because $a^{1}=a$ and $p^{1}=p$.
- Induction step. Let $n \in \mathbb{N}$ be non-zero. Assume that $p^{n} \mid a^{n}$. By the properties of division, the induction hypothesis, and the assumption $p \mid a$, we have $p^{n} p \mid a^{n} a$. This is the same as $p^{n+1} \mid$ a^{n+1}.

