Answer on Question \#80890 - Math - Linear Algebra

Question

Let $P^{\wedge}(e)(x)=\{p(x) \in R[x] \mid p(x)=p(-x)\}$ Find $W=P(e) \cap P 3$. Find a basis for W and the dimension of W.

Solution

P_{3} consists of all polynomials of degree 3, i.e. of all functions

$$
y=a x^{3}+b x^{2}+c x+d
$$

$y \in P(e)$ means

$$
a x^{3}+b x^{2}+c x+d=a(-x)^{3}+b(-x)^{2}+c(-x)+d
$$

from which

$$
a x^{3}+c x=0
$$

This holds for all x only if $a=c=0$.
So

$$
W=\left\{y=b x^{2}+d, b \in \mathbb{R}, d \in \mathbb{R}\right\} .
$$

A basis for W is $\left\{1, x^{2}\right\}$.
Indeed, these two elements are linearly independent since

$$
\alpha+\beta x^{2}=0 \text { for all } x \text { yields } \alpha=\beta=0
$$

and all elements of W are linear combinations of 1 and x^{2}.
Hence the dimension of W is 2 .
Answer: $W=\left\{y=b x^{2}+d, b \in \mathbb{R}, d \in \mathbb{R}\right\}$; a basis for W is $\left\{1, x^{2}\right\} ; \operatorname{dim}(W)=2$.

