Answer on Question \#80854 - Math - Linear Algebra

Question

Find the orthogonal canonical reduction of the quadratic form $x 2+y 2+z 2-2 x y-2 x z-2 y z$. Also,find its principal axes.

Solution

$f(x, y, z)=x^{2}+y^{2}+z^{2}-2 x y-2 x z-2 y z$
The matrix of the quadratic form is

$$
A=\left(\begin{array}{ccc}
1 & -1 & -1 \\
-1 & 1 & -1 \\
-1 & -1 & 1
\end{array}\right)
$$

The characteristic equation is

$$
\left|\begin{array}{ccc}
1-\lambda & -1 & -1 \\
-1 & 1-\lambda & -1 \\
-1 & -1 & 1-\lambda
\end{array}\right|=0
$$

hence
$(1-\lambda)\left((1-\lambda)^{2}-1\right)+(-1+\lambda-1)-(1+1-\lambda)=0$
$(1-\lambda)\left(\lambda^{2}-2 \lambda\right)-4+2 \lambda=0$
$(\lambda-2)^{2}(\lambda+1)=0$
$\lambda_{1}=2, \lambda_{2}=-1$.
Thus, the orthogonal canonical reduction is

$$
Q=\left(\begin{array}{lll}
x^{\prime} & y^{\prime} & z^{\prime}
\end{array}\right)\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & -1
\end{array}\right)\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)=2\left(x^{\prime}\right)^{2}+2\left(y^{\prime}\right)^{2}-\left(z^{\prime}\right)^{2}
$$

Find eigenvectors:
$\lambda=2$
$\left(\begin{array}{lll}-1 & -1 & -1 \\ -1 & -1 & -1 \\ -1 & -1 & -1\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=0$
$x+y+z=0$
Orthogonal solutions to this equation are $\left(\begin{array}{l}1 \\ -1 \\ 0\end{array}\right)$ and $\left(\begin{array}{l}1 \\ 1 \\ -2\end{array}\right)$. These normed vectors are principal axes $\frac{1}{\sqrt{2}}\left(\begin{array}{l}1 \\ -1 \\ 0\end{array}\right)$ and $\frac{1}{\sqrt{6}}\left(\begin{array}{l}1 \\ 1 \\ -2\end{array}\right)$.
$\lambda=-1$

$$
\left(\begin{array}{lll}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=0
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
2 x-y-z=0 \\
-x+2 y-z=0 \\
-x-y+2 z=0
\end{array}\right. \\
& \left\{\begin{array}{l}
z=2 x-y \\
-x+2 y-2 x+y=0 \\
-x-y+4 x-2 y=0
\end{array}\right.
\end{aligned}
$$

$$
\left\{\begin{array}{l}
z=2 x-y \\
y=x \\
y=x
\end{array}\right.
$$

The normed solution is principal axis $\frac{1}{\sqrt{3}}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$.

