Answer on Question \#80848 - Math - Linear Algebra

Question

Let $T: R^{3} \rightarrow R^{3}$ be defined by $T(x 1, x 2, x 3)=(x 1-x 3, x 2-x 3, x 1)$. Is T invertible? If yes, find a rule for $T{ }^{1}$ like the one which defines T ?

Solution

We need to decide if the solution to
$T\left(y_{1}, y_{2}, y_{3}\right)=\left(x_{1}, x_{2}, x_{3}\right)$
exists and is unique for all $\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$.
This means

$$
\left\{\begin{array}{l}
y_{1}-y_{3}=x_{1} \\
y_{2}-y_{3}=x_{2} \\
y_{1}=x_{3}
\end{array}\right.
$$

Then

$$
\left\{\begin{array}{l}
y_{1}=x_{3} \\
y_{3}=x_{3}-x_{1} \\
y_{2}=x_{2}+y_{3}=x_{2}+x_{3}-x_{1}
\end{array}\right.
$$

The unique solution exists for any x_{1}, x_{2}, x_{3}. The rule is
$T^{-1}\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{3}, x_{2}+x_{3}-x_{1}, x_{3}-x_{1}\right)$.
Answer: Yes, it is invertible. $T^{-1}\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{3}, x_{2}+x_{3}-x_{1}, x_{3}-x_{1}\right)$.

