Question 1. Prove the statement "If $f=o(g)$ then $f=O(g)$ ".
Solution. Recall that $f(x)=o(g(x))$ as $x \rightarrow x_{0}$ iff for any $\varepsilon>0$ there is $\delta>0$, such that $|f(x)| \leq \varepsilon|g(x)|$ for all x, such that $\left|x-x_{0}\right|<\delta$. Also recall that $f(x)=O(g(x))$ iff there are $M>0$ and $\delta>0$, such that $|f(x)| \leq$ $M|g(x)|$ for all x with $\left|x-x_{0}\right|<\delta$. Now if $f(x)=o(g(x))$ as $x \rightarrow x_{0}$, then one can fix some $\varepsilon>0$, find the corresponding $\delta>0$ and set $M=\varepsilon$. Then $|f(x)| \leq M|g(x)|$ for all x, such that $\left|x-x_{0}\right|<\delta$. By definition, this means that $f(x)=O(g(x))$.

