Question 1. Prove the statement "If f = o(g) then f = O(g)".

Solution. Recall that f(x) = o(g(x)) as $x \to x_0$ iff for any $\varepsilon > 0$ there is $\delta > 0$, such that $|f(x)| \le \varepsilon |g(x)|$ for all x, such that $|x - x_0| < \delta$. Also recall that f(x) = O(g(x)) iff there are M > 0 and $\delta > 0$, such that $|f(x)| \le M|g(x)|$ for all x with $|x - x_0| < \delta$. Now if f(x) = o(g(x)) as $x \to x_0$, then one can fix some $\varepsilon > 0$, find the corresponding $\delta > 0$ and set $M = \varepsilon$. Then $|f(x)| \le M|g(x)|$ for all x, such that $|x - x_0| < \delta$. By definition, this means that f(x) = O(g(x)).