Question 1. If (a_n) and (b_n) are Cauchy sequences, show directly that $(a_n +$ b_n) is also a Cauchy sequence.

Solution. Since (a_n) and (b_n) are Cauchy sequences, for any $\varepsilon > 0$ there are $N_1 \in \mathbb{N}$, such that $|a_n - a_m| < \frac{\varepsilon}{2}$ for all $m, n > N_1$, and $N_2 \in \mathbb{N}$, such that $|b_n - b_m| < \frac{\varepsilon}{2}$ for all $m, n > N_2$. Set $N = \max\{N_1, N_2\}$. Then for all m, n > N we have

$$|(a_n+b_n)-(a_m+b_m)| = |a_n-a_m+b_n-b_m| \le |a_n-a_m|+|b_n-b_m| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Thus, (a_n+b_n) is a Cauchy sequence.

Thus, $(a_n + b_n)$ is a Cauchy sequence.

1