Question 1. If $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are Cauchy sequences, show directly that $\left(a_{n}+\right.$ b_{n}) is also a Cauchy sequence.

Solution. Since $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are Cauchy sequences, for any $\varepsilon>0$ there are $N_{1} \in \mathbb{N}$, such that $\left|a_{n}-a_{m}\right|<\frac{\varepsilon}{2}$ for all $m, n>N_{1}$, and $N_{2} \in \mathbb{N}$, such that $\left|b_{n}-b_{m}\right|<\frac{\varepsilon}{2}$ for all $m, n>N_{2}$. Set $N=\max \left\{N_{1}, N_{2}\right\}$. Then for all $m, n>N$ we have
$\left|\left(a_{n}+b_{n}\right)-\left(a_{m}+b_{m}\right)\right|=\left|a_{n}-a_{m}+b_{n}-b_{m}\right| \leq\left|a_{n}-a_{m}\right|+\left|b_{n}-b_{m}\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$.
Thus, $\left(a_{n}+b_{n}\right)$ is a Cauchy sequence.

