Answer on Question \#80554 - Math - Abstract Algebra

Question. Not every polynomial that is irreducible over $\mathbb{Q}[x]$ is irreducible over $\mathbb{Z}[x]$. State whether the statement is true or false, justify with reason.

Answer. True. The statement is equivalent to saying that there is a polynomial that is irreducible in $\mathbb{Q}[x]$ and is not irreducible in $\mathbb{Z}[x]$. A polynomial $p=3 x+6$ is an example of such a polynomial.

In $\mathbb{Z}[x], p=3(x+2)$. As \mathbb{Z} is an integral domain, the set of units in $\mathbb{Z}[x]$ is the same as in \mathbb{Z}, namely, $\{-1,1\}$. Hence neither of the factors of p is a unit, and p is not irreducible.

Assume that p factorizes as $q_{1} q_{2}$ in $\mathbb{Q}[x]$. As \mathbb{Q} is an integral domain, the set of units in $\mathbb{Q}[x]$ is the set of all non-zero elements of \mathbb{Q}. As p is not zero, both q_{1} and q_{2} are not zero. As \mathbb{Q} is an integral domain, the sum of the degrees of q_{1} and q_{2} is the degree of p which is 1 . Hence for some $i \in\{1,2\}$, q_{i} has degree 0 . Hence q_{i} is a unit in $\mathbb{Q}[x]$. Also p is not a unit. We conclude that p is irreducible in $\mathbb{Q}[x]$.

