Answer on Question \#80501 - Math - Analytic Geometry

Question

Obtain eqñ of parabola with focus $(3,2)$
Directrix $3 x-4 y+9=0$

Solution

The parabola is the locus of points in that plane that are equidistant from both the directrix and the focus.

The distance from point (x, y) to the point $(3,2)$ is $\sqrt{(x-3)^{2}+(y-2)^{2}}$
The distance from point (x, y) to the line $3 x-4 y+9=0$ is $\frac{|3 x-4 y+9|}{\sqrt{3^{2}+4^{2}}}$
These distances must be equal. The equation will be

$$
\sqrt{(x-3)^{2}+(y-2)^{2}}=\frac{|3 x-4 y+9|}{\sqrt{3^{2}+4^{2}}}
$$

After squaring both sides
$(x-3)^{2}+(y-2)^{2}=\frac{(3 x-4 y+9)^{2}}{25}$
$25\left(x^{2}-6 x+9+y^{2}-4 y+4\right)=9 x^{2}+16 y^{2}-24 x y+54 x-72 y+81$
from which
$16 x^{2}+9 y^{2}+24 x y-204 x-28 y+244=0$
Answer: $16 x^{2}+9 y^{2}+24 x y-204 x-28 y+244=0$

