ANSWER on Question \#80494 - Math - Differential Equations

QUESTION

Using the method of undermined coefficient find the general solution of D.E

$$
y^{(I V)}-2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 y e^{-x}+2 e^{-x} \cdot x+e^{-x} \cdot \sin x
$$

SOLUTION

Hint: In the solution, I will proceed from the assumption that the question contained a mistake and the equation actually looks like this:

$$
y^{(I V)}-2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{-x}+2 e^{-x} \cdot x+e^{-x} \cdot \sin x
$$

As we know from theory, the solution of a differential equation of the form

$$
F\left(x, y, y^{\prime}, y^{\prime \prime}, \ldots, y^{(n)}\right)=f_{1}(x)+f_{2}(x)+f_{3}(x)+\cdots f_{n}(x)
$$

consists of such parts:

1) solution of the homogeneous equation

$$
F\left(x, y, y^{\prime}, y^{\prime \prime}, \ldots, y^{(n)}\right)=0 \rightarrow y=y_{h}(x)
$$

2) partial solutions of inhomogeneous equations

$$
\begin{aligned}
& F\left(x, y, y^{\prime}, y^{\prime \prime}, \ldots, y^{(n)}\right)=f_{1}(x) \rightarrow y=y_{1}(x) \\
& F\left(x, y, y^{\prime}, y^{\prime \prime}, \ldots, y^{(n)}\right)=f_{2}(x) \rightarrow y=y_{2}(x) \\
& F\left(x, y, y^{\prime}, y^{\prime \prime}, \ldots, y^{(n)}\right)=f_{3}(x) \rightarrow y=y_{3}(x) \\
& \ldots \\
& F\left(x, y, y^{\prime}, y^{\prime \prime}, \ldots, y^{(n)}\right)=f_{n}(x) \rightarrow y=y_{n}(x)
\end{aligned}
$$

Then,

$$
y_{\text {sol }}=y_{h}(x)+y_{1}(x)+y_{2}(x)+y_{3}(x)+\cdots+y_{n}(x)
$$

In our case,

$$
y^{(I V)}-2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{-x}+2 e^{-x} \cdot x+e^{-x} \cdot \sin x
$$

1 STEP: We find the solution of the homogeneous equation

$$
y^{(I V)}-2 y^{\prime \prime \prime}+2 y^{\prime \prime}=0
$$

The solution will be sought in the form

$$
\begin{aligned}
& y=e^{k x} \rightarrow v \rightarrow \\
& y^{(I V)}-2 y^{\prime \prime \prime}+2 y^{\prime \prime}=0 \rightarrow k^{4} \cdot e^{k x}-2 k^{3} \cdot e^{k x}+2 k^{2} \cdot e^{k x}=0 \rightarrow e^{k x} \cdot\left(k^{4}-2 k^{3}+2 k^{2}\right)=0 \rightarrow \\
& k^{4}-2 k^{3}+2 k^{2}=0 \rightarrow k^{2} \cdot\left(k^{2}-2 k+2\right)=0 \rightarrow\left[\begin{array}{c}
k^{2}=0 \\
k^{2}-2 k+2=0
\end{array}\right. \\
& k^{2}=0 \rightarrow k_{1,2}=0-\text { multiple root } \\
& k^{2}-2 k+2=0 \rightarrow\left\{\begin{array}{c}
a=1 \\
b=-2 \\
c=2
\end{array} \rightarrow D=b^{2}-4 a c=(-2)^{2}-4 \cdot 1 \cdot 2=4-8=-4 \rightarrow\right. \\
& \sqrt{D}=\sqrt{-4}=2 i \rightarrow\left[\begin{array}{l}
k_{3}=\frac{-b-\sqrt{D}}{2 a}=\frac{-(-2)-2 i}{2 \cdot 1}=\frac{2-2 i}{2}=1-i \\
k_{4}=\frac{-b+\sqrt{D}}{2 a}=\frac{-(-2)+2 i}{2 \cdot 1}=\frac{2+2 i}{2}=1+i
\end{array}\right.
\end{aligned}
$$

Then,

$$
\begin{gathered}
y_{h}(x)=\underbrace{e^{k_{1} x}(A+B x)}_{\text {since the root of multiplicity } 2}+C_{1} e^{k_{3} x}+C_{2} e^{k_{4} x} \rightarrow \\
y_{h}(x)=e^{0 \cdot x}(A+B x)+C_{1} e^{(1+i) x}+C_{3} e^{(1-i) x} \equiv A+B x+A_{1} e^{x} \cdot \cos x+A_{2} e^{x} \cdot \sin x \\
\text { Hint: }\left\{\begin{array}{l}
e^{i x}=\cos x+i \cdot \sin x \\
e^{-i x}=\cos x+i \cdot \sin x
\end{array} \rightarrow C_{1} e^{i x}+C_{2} e^{-i x} \equiv A_{1} \cos x+A_{2} \sin x\right.
\end{gathered}
$$

Conclusion,

$$
y^{(I V)}-2 y^{\prime \prime \prime}+2 y^{\prime \prime}=0 \rightarrow y_{h}(x)=A+B x+A_{1} e^{x} \cdot \cos x+A_{2} e^{x} \cdot \sin x
$$

2 STEP: We find a particular solution of the inhomogeneous equations
a) $f_{1}(x)=3 e^{-x}$

$$
y^{(I V)}-2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{-x}
$$

The solution will be sought in the form

$$
y(x)=C e^{-x} \rightarrow\left\{\begin{array}{l}
y^{(I V)}=C \cdot(-1)^{4} \cdot e^{-x}=C e^{-x} \\
y^{\prime \prime \prime}=C \cdot(-1)^{3} \cdot e^{-x}=-C e^{-x} \\
y^{\prime \prime}=C \cdot(-1)^{2} \cdot e^{-x}=C e^{-x}
\end{array}\right.
$$

Then,

$$
\begin{gathered}
y^{(I V)}-2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{-x} \rightarrow C e^{-x}-2 \cdot\left(-C e^{-x}\right)+2 \cdot C e^{-x}=3 e^{-x} \rightarrow 5 C e^{-x}=3 e^{-x} \mid \div\left(5 e^{-x}\right) \rightarrow \\
C=\frac{3 e^{-x}}{5 e^{-x}}=\frac{3}{5}
\end{gathered}
$$

Conclusion,

$$
y^{(I V)}-2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{-x} \rightarrow y_{1}(x)=\frac{3}{5} e^{-x}
$$

b) $f_{2}(x)=2 e^{-x} \cdot x$

$$
y^{(I V)}-2 y^{\prime \prime \prime}+2 y^{\prime \prime}=2 e^{-x} \cdot x
$$

The solution will be sought in the form

$$
y(x)=e^{-x} \cdot(A x+B) \rightarrow\left\{\begin{array}{c}
y^{\prime}=-e^{-x} \cdot(A x+B)+A e^{-x} \equiv e^{-x} \cdot(A-B-A x) \\
y^{\prime \prime}=-e^{-x} \cdot(A-B-A x)-A e^{-x} \equiv e^{-x} \cdot(B-2 A+A x) \\
y^{\prime \prime \prime}=-e^{-x} \cdot(B-2 A+A x)+A e^{-x} \equiv e^{-x} \cdot(3 A-B-A x) \\
y^{(I V)}=-e^{-x} \cdot(3 A-B-A x)-A e^{-x} \equiv e^{-x} \cdot(B-4 A+A x)
\end{array}\right.
$$

Then,

$$
\begin{aligned}
& y^{(I V)}-2 y^{\prime \prime \prime}+2 y^{\prime \prime}=2 e^{-x} \cdot x \rightarrow \\
& e^{-x} \cdot(B-4 A+A x)-2 \cdot e^{-x} \cdot(3 A-B-A x)+2 \cdot e^{-x} \cdot(B-2 A+A x)=e^{-x} \cdot(2 x) \rightarrow \\
& e^{-x} \cdot(B-4 A+A x-6 A+2 B+2 A x+2 B-4 A+2 A x)=e^{-x} \cdot(2 x) \rightarrow \\
& e^{-x} \cdot(5 B-14 A+5 A x)=e^{-x} \cdot(2 x) \rightarrow 5 B-14 A+5 A x=2 x \rightarrow\left\{\begin{array}{l}
5 A=2 \mid \div(5) \\
5 B-14 A=0
\end{array} \rightarrow\right. \\
& \left\{\begin{array}{c}
A=\frac{2}{5} \\
5 B=14 \cdot \frac{2}{5}
\end{array} \div(5) \quad \rightarrow \begin{array}{l}
A=\frac{2}{5} \\
B=\frac{28}{25}
\end{array}\right.
\end{aligned}
$$

Conclusion,

$$
y^{(I V)}-2 y^{\prime \prime \prime}+2 y^{\prime \prime}=2 e^{-x} \cdot x \rightarrow y_{2}(x)=e^{-x} \cdot\left(\frac{2 x}{5}+\frac{28}{25}\right)
$$

c) $f_{3}(x)=e^{-x} \cdot \sin x$

$$
y^{(I V)}-2 y^{\prime \prime \prime}+2 y^{\prime \prime}=e^{-x} \cdot \sin x
$$

The solution will be sought in the form

$$
\begin{gathered}
y(x)=A e^{-x} \cdot \sin x+B e^{-x} \cdot \cos x \rightarrow \\
y^{\prime}=-A e^{-x} \cdot \sin x+A e^{-x} \cdot \cos x-B e^{-x} \cdot \cos x-B e^{-x} \cdot \sin x \rightarrow \\
y^{\prime}=(-A-B) e^{-x} \cdot \sin x+(A-B) e^{-x} \cdot \cos x \\
y^{\prime \prime}=-(-A-B) e^{-x} \cdot \sin x+(-A-B) e^{-x} \cdot \cos x-(A-B) e^{-x} \cdot \cos x-(A-B) e^{-x} \cdot \sin x \rightarrow \\
y^{\prime \prime}=(A+B-A+B) e^{-x} \cdot \sin x+(-A-B-A+B) e^{-x} \cdot \cos x \rightarrow \\
y^{\prime \prime}=(2 B) e^{-x} \cdot \sin x+(-2 A) e^{-x} \cdot \cos x \\
y^{\prime \prime \prime}=-(2 B) e^{-x} \cdot \sin x+(2 B) e^{-x} \cdot \cos x-(-2 A) e^{-x} \cdot \cos x-(-2 A) e^{-x} \cdot \sin x \rightarrow \\
y^{\prime \prime \prime \prime}=-(-2 B+2 A) e^{-x} \cdot \sin x+(-2 B+2 A) e^{-x} \cdot \cos x-(2 B+2 A) e^{-x} \cdot \cos x-(2 B+2 A) e^{-x} \cdot \sin x \\
y^{\prime \prime \prime \prime}=(2 B-2 A-2 B-2 A) e^{-x} \cdot \sin x+(-2 B+2 A-2 B-2 A) e^{-x} \cdot \cos x \rightarrow \\
y^{\prime \prime \prime \prime}=(-4 A) e^{-x} \cdot \sin x+(-4 B) e^{-x} \cdot \cos x
\end{gathered}
$$

Then,

$$
\begin{gathered}
y^{(I V)}-2 y^{\prime \prime \prime}+2 y^{\prime \prime}=2 e^{-x} \cdot \sin x \rightarrow \\
(-4 A) e^{-x} \cdot \sin x+(-4 B) e^{-x} \cdot \cos x-2\left((-2 B+2 A) e^{-x} \cdot \sin x+(2 B+2 A) e^{-x} \cdot \cos x\right)+ \\
+2\left((2 B) e^{-x} \cdot \sin x+(-2 A) e^{-x} \cdot \cos x\right)=e^{-x} \cdot \sin x \rightarrow \\
(-4 A) e^{-x} \cdot \sin x+(-4 B) e^{-x} \cdot \cos x+(4 B-4 A) e^{-x} \cdot \sin x+(-4 B-4 A) e^{-x} \cdot \cos x+ \\
+(4 B) e^{-x} \cdot \sin x+(-4 A) e^{-x} \cdot \cos x=e^{-x} \cdot \sin x \rightarrow \\
(-4 A+4 B-4 A+4 B) e^{-x} \cdot \sin x+(-4 B-4 B-4 A-4 A) e^{-x} \cdot \cos x=e^{-x} \cdot \sin x \rightarrow \\
(-8 A+8 B) e^{-x} \cdot \sin x+(-8 B-8 A) e^{-x} \cdot \cos x=e^{-x} \cdot \sin x \rightarrow
\end{gathered}
$$

$$
\begin{gathered}
\left\{\begin{array} { l }
{ - 8 A + 8 B = 1 } \\
{ - 8 A - 8 B = 0 }
\end{array} \rightarrow \left\{\begin{array} { c }
{ - 8 A + 8 B = 1 } \\
{ - 8 A = 8 B | \div (- 8) }
\end{array} \rightarrow \left\{\begin{array} { c }
{ - 8 \cdot (- B) + 8 B = 1 } \\
{ A = - B }
\end{array} \rightarrow \left\{\begin{array}{l}
16 B=1 \\
A=-B
\end{array}\right.\right.\right.\right. \\
\left\{\begin{array}{c}
A=-\frac{1}{16} \\
B=\frac{1}{16}
\end{array}\right.
\end{gathered}
$$

Conclusion,

$$
y^{(I V)}-2 y^{\prime \prime \prime}+2 y^{\prime \prime}=2 e^{-x} \cdot \sin x \rightarrow y_{3}(x)=-\frac{\sin x}{16} \cdot e^{-x}+\frac{\cos x}{16} \cdot e^{-x}
$$

General conclusion,

$$
\begin{gathered}
y^{(I V)}-2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 y e^{-x}+2 e^{-x} \cdot x+e^{-x} \cdot \sin x \rightarrow \\
y(x)=y_{h}(x)+y_{1}(x)+y_{2}(x)+y_{3}(x) \rightarrow \\
y(x)=A+B x+A_{1} e^{x} \cdot \cos x+A_{2} e^{x} \cdot \sin x+\frac{3}{5} e^{-x}+e^{-x} \cdot\left(\frac{2 x}{5}+\frac{28}{25}\right)-\frac{\sin x}{16} \cdot e^{-x}+\frac{\cos x}{16} \cdot e^{-x} \rightarrow \\
y(x)=A+B x+A_{1} e^{x} \cdot \cos x+A_{2} e^{x} \cdot \sin x+\left(\frac{3}{5}+\frac{28}{25}\right) \cdot e^{-x}+\frac{2 x}{5} \cdot e^{-x}-\frac{\sin x}{16} \cdot e^{-x}+\frac{\cos x}{16} \cdot e^{-x} \rightarrow \\
y(x)=A+B x+A_{1} e^{x} \cdot \cos x+A_{2} e^{x} \cdot \sin x+\frac{43}{25} \cdot e^{-x}+\frac{2 x}{5} \cdot e^{-x}-\frac{\sin x}{16} \cdot e^{-x}+\frac{\cos x}{16} \cdot e^{-x}
\end{gathered}
$$

ANSWER

$$
y(x)=A+B x+A_{1} e^{x} \cdot \cos x+A_{2} e^{x} \cdot \sin x+\frac{43}{25} \cdot e^{-x}+\frac{2 x}{5} \cdot e^{-x}-\frac{\sin x}{16} \cdot e^{-x}+\frac{\cos x}{16} \cdot e^{-x}
$$

