Answer on the Question \#80408 - Math - Trigonometry

Question

if cosec alpha $+\cot$ alpha $=2 \sqrt{ } 3$ than prove that \cos alpha $=2 \backslash \sqrt{ } 5$

Solution

Now, let's solve the following equation:

$$
\begin{aligned}
& \operatorname{Cosec}(\mathrm{x})+\cot (\mathrm{x})=2 * \operatorname{sqrt}(3) \\
& (1+\cos (\mathrm{x})) / \sin (\mathrm{x})=2 * \operatorname{sqrt}(3) ;\left.\right|^{\wedge} 2 \\
& (1+\cos (\mathrm{x}))^{2}=12 * \sin ^{2}(\mathrm{x}) \\
& (1+\cos (\mathrm{x}))^{2}=12 *\left(1-\cos ^{2}(\mathrm{x})\right) \\
& 1+2 * \cos (\mathrm{x})+\cos ^{2}(\mathrm{x})=12-12 * \cos ^{2}(\mathrm{x}) \\
& 13^{*} \cos ^{2}(\mathrm{x})+2 * \cos (\mathrm{x})-11=0 \\
& \mathrm{D}=4+4 * 13 * 11=576=24^{2}
\end{aligned}
$$

$$
\operatorname{Cos}(x)=(-2 \pm 24) / 26
$$

$$
\operatorname{Cos}(x)_{1}=-1
$$

$$
\operatorname{Cos}(\mathrm{x})_{2}=22 / 26=11 / 13
$$

So, $\cos (x)$ can be -1 or $11 / 13$, it is not equal to $2 \backslash \sqrt{ } 5$, hence the statement of question is false.

