Answer on Question \#80398 - Math - Calculus

Question

Find the angle of intersection between the curves $x^{\wedge} 2+2 x y-y^{\wedge} 2+2 a x=0$ and $3 y^{\wedge} 3-2 a^{\wedge} 2 x-$ $4 a 2 y+a^{\wedge} 3=0$ at the point ($a,-a$).Please solve it is very urgent

Solution

First curve:
$x^{2}+2 x y-y^{2}+2 a x=0$
Differentiate with respect to x :
$2 x+2 x y^{\prime}+2 y-2 y y^{\prime}+2 a=0$,
from which
$y^{\prime}=\frac{x+y+a}{y-x}$
For $(x, y)=(a,-a)$:
$y^{\prime}=\frac{a-a+a}{-a-a}=-\frac{1}{2}$
This is the tangent of angle between the first curve and x-axis, $\tan \theta_{1}=-\frac{1}{2}$
Second curve:
$3 y^{3}-2 a^{2} x-4 a^{2} y+a^{3}=0$
Differentiate with respect to x :
$9 y^{2} y^{\prime}-2 a^{2}-4 a^{2} y^{\prime}=0$,
from which
$y^{\prime}=\frac{2 a^{2}}{9 y^{2}-4 a^{2}}$
For $(x, y)=(a,-a)$:

$$
y^{\prime}=\frac{2 a^{2}}{9 a^{2}-4 a^{2}}=\frac{2}{5}
$$

This is the tangent of angle between the second curve and x-axis, $\tan \theta_{2}=\frac{2}{5}$.
Then
$\tan \left(\theta_{2}-\theta_{1}\right)=\frac{\tan \theta_{2}-\tan \theta_{1}}{1+\tan \theta_{2} \tan \theta_{1}}=\frac{\frac{2}{5}+\frac{1}{2}}{1-\frac{2.1}{5} \frac{1}{2}}=\frac{9}{8}$
So the angle is $\theta=\arctan \frac{9}{8}$.

