Answer on Question \#80391 - Math - Calculus

Question

Say true or false. The tangent to the curve, $x^{3}+6 y^{2}+5 x=0$ at $(-1,1)$ is perpendicular to the y axis.

Solution

If the tangent to the curve is perpendicular to the y-axis, then it is also parallel to the x-axis. The tangent at the point $(-1,1)$ will be parallel to the x-axis if the following equality holds:

$$
y^{\prime}(-1)=0
$$

We express y in terms of x :
$x^{3}+6 y^{2}+5 x=0$
$y^{2}=-\frac{x^{3}+5 x}{6}$
$y=\sqrt{-\frac{x^{3}+5 x}{6}}$
We take only the square root with the positive sign because the y-coordinate of the $(-1,1)$ is positive.

We define the derivative of the function $y(x)$:
$y^{\prime}(x)=\left(\sqrt{-\frac{x^{3}+5 x}{6}}\right)^{\prime}=\frac{1}{2 \sqrt{-\frac{x^{3}+5 x}{6}}} \cdot\left(-\frac{x^{3}+5 x}{6}\right)^{\prime}=-\frac{3 x^{2}+5}{2 \sqrt{-6\left(x^{3}+5 x\right)}}$
$y^{\prime}(-1)=-\frac{2}{3}$
As one can see, $y(-1) \neq 0$, then the curve at $(-1,1)$ is not parallel to the x-axis and not perpendicular to the y -axis.

Answer:

The statement is false.

