Answer on Question \#80306 - Math - Quantitative Methods

Question

For the equation $y=2+3+4 x^{\wedge} 2+5 x^{\wedge} 3$
(a) Find the equation for the linear approximation when $x=3$.
(b) Find the equation for the quadratic approximation, also when $x=3$.

Solution

Maybe the function should be

$$
\begin{equation*}
y=2+3 x+4 x^{2}+5 x^{3} \tag{1}
\end{equation*}
$$

because it makes no sense to write $2+3$ instead of 5 . I will do the question using the function (1).
We have
$f(3)=2+3 \cdot 3+4 \cdot 3^{2}+5 \cdot 3^{3}=182$
Then

$$
\begin{aligned}
& f^{\prime}(x)=3+8 x+15 x^{2}, \\
& f^{\prime}(3)=3+8 \cdot 3+15 \cdot 3^{2}=162, \\
& f^{\prime \prime}(x)=8+30 x, \\
& f^{\prime \prime}(3)=8+30 \cdot 3=98 .
\end{aligned}
$$

(a) Linear approximation is
$y=f(a)+f^{\prime}(a)(x-a)$
where $a=3$.
Then we have
$y=182+162(x-3)$
or
$y=-304+162 x$.
(b) Quadratic approximation is
$y=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}$,
where $a=3$.
Then we have

$$
y=182+162(x-3)+\frac{98}{2}(x-3)^{2}
$$

or
$y=137-132 x+49 x^{2}$
Answer: a) $y=-304+162 x$; b) $y=137-132 x+49 x^{2}$

