ANSWER on Question \#80273 - Math - Differential Equations
 QUESTION

Solve the PDE:
1)

$$
\left(D^{2}+D-1\right) z=4 e^{x+y} \cos (x+y)
$$

2)

$$
\left(D+D^{\prime}-1\right)\left(D+2 D^{\prime}-3\right) z=4+3 x+6 y
$$

SOLUTION

Before solving the task, let us recall some theoretical facts.

Let the given differential equation be

$$
F\left(D, D^{\prime}\right)=f(x, y)
$$

Factorize $F\left(D, D^{\prime}\right)$ into linear factors. Then use the following results:
Rule I. Corresponding to each non-repeated factor ($b D-a D^{\prime}-c$), the part of C.F. is taken as

$$
e^{\left(\frac{c x}{b}\right)} \varphi(b y+a x), \text { if } b \neq 0
$$

We now have three particular cases of Rule I:
Rule IA. Take $c=0$ in Rule I. Hence corresponding to each linear factor ($b D-a D^{\prime}$), the part of C.F. is

$$
\varphi(b y+a x), \text { if } b \neq 0
$$

Rule IB. Take $a=0$ in Rule I. Hence corresponding to each linear factor ($b D-c$), the part of C.F. is

$$
e^{\left(\frac{c x}{b}\right)} \varphi(b y), \text { if } b \neq 0
$$

Rule IC. Take $a=c=0$ and $b=1$ in Rule I. Hence corresponding to each linear factor $(1 \cdot D)$, the part of C.F. is

$$
\varphi(y)
$$

Rule II. When

$$
f(x, y)=V(x, y) e^{a x+b y}
$$

Then,

$$
\text { P.I. }=\frac{1}{F\left(D, D^{\prime}\right)} V e^{a x+b y}=e^{a x+b y} \frac{1}{F\left(D+a, D^{\prime}+b\right)} V(x, y)
$$

In our case,
1)

$$
\begin{gathered}
\left(D^{2}+D-1\right) z=4 e^{x+y} \cos (x+y) \\
\left(D^{2}+D-1\right) z=4 e^{x+y} \cos (x+y) \rightarrow z(x, y)=\text { C.F. }+ \text { P.I. }
\end{gathered}
$$

0 STEP: Factorize $F\left(D, D^{\prime}\right)$ into linear factors.

$$
\begin{gathered}
D^{2}+D-1 \rightarrow \underbrace{1}_{a} \cdot x^{2}+\underbrace{1}_{b} \cdot x \underbrace{-1}_{c}=0 \rightarrow \sqrt{D}=\sqrt{b^{2}-4 a c}=\sqrt{(1)^{2}-4 \cdot 1 \cdot(-1)}=\sqrt{1+4} \\
\sqrt{D}=\sqrt{5} \rightarrow\left[\begin{array}{l}
m_{1}=\frac{-b-\sqrt{D}}{2 a}=\frac{-1-\sqrt{5}}{2 \cdot 1}=-\frac{1+\sqrt{5}}{2} \\
m_{2}=\frac{-b+\sqrt{D}}{2 a}=\frac{-1+\sqrt{5}}{2 \cdot 1}=-\frac{1-\sqrt{5}}{2}
\end{array}\right.
\end{gathered}
$$

Conclusion,

$$
\begin{aligned}
m^{2}+m-1= & \left(m-m_{1}\right)\left(m-m_{2}\right)=\left(m+\frac{1+\sqrt{5}}{2}\right)\left(m+\frac{1-\sqrt{5}}{2}\right) \rightarrow \\
& D^{2}+D-1=\left(D+\frac{1+\sqrt{5}}{2}\right)\left(D+\frac{1-\sqrt{5}}{2}\right)
\end{aligned}
$$

Then,

$$
\left(D^{2}+D-1\right) z=4 e^{x+y} \cos (x+y) \rightarrow\left(D+\frac{1+\sqrt{5}}{2}\right)\left(D+\frac{1-\sqrt{5}}{2}\right) z=4 e^{x+y} \cos (x+y)
$$

1 STEP: Let find C.F.

$$
\left\{\begin{array} { c }
{ (D + \frac { 1 + \sqrt { 5 } } { 2 }) z } \\
{ (b D - a D ^ { \prime } - c) z }
\end{array} \rightarrow \left\{\begin{array}{c}
b=1 \\
a=0 \\
c=-\frac{1+\sqrt{5}}{2}
\end{array} \rightarrow(C . F .)_{1}=e^{\left(\frac{-\frac{1+\sqrt{5}}{2} \cdot x}{1}\right)} \cdot \varphi_{1}(1 \cdot y+(0) \cdot x) \rightarrow\right.\right.
$$

$(C . F .)_{1}=e^{-\frac{1+\sqrt{5}}{2} x} \cdot \varphi_{1}(y)$, where φ_{1} is arbitrary function

$$
\begin{gathered}
\left\{\begin{array} { c }
{ (D + \frac { 1 - \sqrt { 5 } } { 2 }) z } \\
{ (b D - a D ^ { \prime } - c) z }
\end{array} \rightarrow \left\{\begin{array}{c}
b=1 \\
a=0 \\
c=-\frac{1-\sqrt{5}}{2}
\end{array} \rightarrow(C . F .)_{2}=e^{\left(\frac{-\frac{1-\sqrt{5}}{2} \cdot x}{1}\right)} \cdot \varphi_{2}(1 \cdot y+(0) \cdot x) \rightarrow\right.\right. \\
(C . F .)_{2}=e^{-\frac{1-\sqrt{5}}{2} x} \cdot \varphi_{2}(y), \text { where } \varphi_{2} \text { is arbitrary function }
\end{gathered}
$$

Then,

$$
C . F .=(C . F .)_{1}+(C . F .)_{2} \rightarrow C . F .=e^{-\frac{1+\sqrt{5}}{2} \cdot x} \cdot \varphi_{1}(y)+e^{-\frac{1-\sqrt{5}}{2} x} \cdot \varphi_{2}(y)
$$

2 STEP: Let find P.I.

$$
\begin{gathered}
\text { P.I. }=\frac{1}{D^{2}+D-1} 4 e^{\stackrel{a}{1} \cdot x+\frac{b}{1} \cdot y} \cos (x+y)=4 e^{x+y} \frac{1}{(D+1)^{2}+(D+1)-1} \cos (x+y)= \\
=4 e^{x+y} \frac{1}{D^{2}+2 D+1+D+1-1} \cos (x+y)=4 e^{x+y} \frac{1}{D^{2}+3 D+1} \cos (x+y)= \\
=4 e^{x+y} \frac{1}{(-1)^{2}+3 D+1} \cos (x+y)=4 e^{x+y} \frac{1}{1+3 D+1} \cos (x+y)= \\
=4 e^{x+y} \frac{1}{3 D+2} \cos (x+y)=4 e^{x+y} \frac{(3 D-2)}{(3 D+2)(3 D-2)} \cos (x+y)= \\
=4 e^{x+y} \frac{(3 D-2)}{9 D^{2}-4} \cos (x+y)=4 e^{x+y} \frac{(3 D-2)}{9 \cdot(-1)^{2}-4} \cos (x+y)==4 e^{x+y} \frac{(3 D-2)}{9 \cdot 1-4} \cos (x+y) \\
=4 e^{x+y} \frac{(3 D-2)}{5} \cos (x+y)= \\
=\frac{4}{5} e^{x+y}(3 D-2) \cos (x+y)=\frac{4}{5} e^{x+y}\left(3 \frac{\partial}{\partial x}-2\right) \cos (x+y)= \\
=\frac{4}{5} e^{x+y}\left(3 \frac{\partial}{\partial x}(\cos (x+y))-2 \cdot \cos (x+y)\right)=
\end{gathered}
$$

$$
\begin{gathered}
=\frac{4}{5} e^{x+y}(3(-\sin (x+y))-2 \cos (x+y))= \\
=-\frac{4}{5} e^{x+y}(3 \sin (x+y)+2 \cos (x+y))
\end{gathered}
$$

Then,

$$
\text { P.I. }=-\frac{4}{5} e^{x+y}(3 \sin (x+y)+2 \cos (x+y))
$$

Conclusion,

$$
\begin{gathered}
z(x, y)=\text { C.F. }+ \text { P.I. }= \\
=e^{-\frac{1+\sqrt{5}}{2} \cdot x} \cdot \varphi_{1}(y)+e^{-\frac{1-\sqrt{5}}{2} x} \cdot \varphi_{2}(y)-\frac{4}{5} e^{x+y}(3 \sin (x+y)+2 \cos (x+y)) \\
z(x, y)=e^{-\frac{1+\sqrt{5}}{2} \cdot x} \cdot \varphi_{1}(y)+e^{-\frac{1-\sqrt{5}}{2} x} \cdot \varphi_{2}(y)-\frac{4}{5} e^{x+y}(3 \sin (x+y)+2 \cos (x+y)) \\
\left\{\begin{array}{c}
z(x, y)=e^{-\frac{1+\sqrt{5}}{2} \cdot x} \cdot \varphi_{1}(y)+e^{-\frac{1-\sqrt{5}}{2} x} \cdot \varphi_{2}(y)-\frac{4}{5} e^{x+y}(3 \sin (x+y)+2 \cos (x+y)) \\
\text { where } \varphi_{1} \text { and } \varphi_{2} \text { are arbitrary functions }
\end{array}\right.
\end{gathered}
$$

2)

$$
\left(D+D^{\prime}-1\right)\left(D+2 D^{\prime}-3\right) z=4+3 x+6 y
$$

1 STEP: Let find C.F.

$$
\begin{gathered}
\left\{\begin{array} { c }
{ (D + D ^ { \prime } - 1) z } \\
{ (b D - a D ^ { \prime } - c) z }
\end{array} \rightarrow \left\{\begin{array}{c}
b=1 \\
a=-1 \\
c=1
\end{array} \rightarrow(\text { C.F. })_{1}=e^{\left(\frac{1 \cdot x}{1}\right)} \cdot \varphi_{1}(1 \cdot y+(-1) \cdot x) \rightarrow\right.\right. \\
(C . F .)_{1}=e^{x} \cdot \varphi_{1}(y-x), \text { where } \varphi_{1} \text { is arbitrary function } \\
\left\{\begin{array} { c }
{ (D + 2 D ^ { \prime } - 3) z } \\
{ (b D - a D ^ { \prime } - c) z }
\end{array} \rightarrow \left\{\begin{array}{c}
b=1 \\
a=-2 \\
c=3
\end{array} \rightarrow(\text { C.F. })_{2}=e^{\left(\frac{3 \cdot x}{1}\right)} \cdot \varphi_{2}(1 \cdot y+(-2) \cdot x) \rightarrow\right.\right. \\
(C . F .)_{2}=e^{3 x} \cdot \varphi_{2}(y-2 x), \text { where } \varphi_{2} \text { is arbitrary function }
\end{gathered}
$$

Then,

$$
\text { C.F. }=(\text { C.F. })_{1}+(C . F .)_{2} \rightarrow \text { C.F. }=e^{x} \cdot \varphi_{1}(y-x)+e^{3 x} \cdot \varphi_{2}(y-2 x)
$$

2 STEP: Let find P.I.

$$
\begin{gathered}
P . I .=\frac{1}{\left(D+D^{\prime}-1\right)\left(D+2 D^{\prime}-3\right)}(4+3 x+6 y)= \\
=\frac{1}{(-1) \cdot\left(1-\left[D+D^{\prime}\right]\right) \cdot(-3) \cdot\left(1-\left[\frac{D+2 D^{\prime}}{3}\right]\right)}(4+3 x+6 y)= \\
=\frac{1}{3} \cdot\left(1-\left[D+D^{\prime}\right]\right)^{-1} \cdot\left(1-\left[\frac{D+2 D^{\prime}}{3}\right]\right)^{-1}(4+3 x+6 y)= \\
=\left[\frac{1}{1-x}=1+x+x^{2}+x^{3}+x^{4}+\cdots,|x|<1\right]= \\
=\frac{1}{3} \cdot\left(1+\left[D+D^{\prime}\right]+\left[D+D^{\prime}\right]^{2}+\cdots\right) \cdot\left(1+\left[\frac{D+2 D^{\prime}}{3}\right]+\left[\frac{D+2 D^{\prime}}{3}\right]^{2}+\cdots\right)(4+3 x+6 y) \\
=\frac{1}{3} \cdot\left(1+\left[D+D^{\prime}\right]+\left[\frac{D+2 D^{\prime}}{3}\right]+\cdots\right)(4+3 x+6 y)= \\
=\frac{1}{3} \cdot\left(1+D+D^{\prime}+\frac{D}{3}+\frac{2 D^{\prime}}{3}\right)(4+3 x+6 y)=\frac{1}{3}\left(1+\frac{4 D}{3}+\frac{5 D^{\prime}}{3}\right)(4+3 x+6 y)=
\end{gathered}
$$

$$
\begin{gathered}
=\frac{1}{3} \cdot\left(4+3 x+6 y+\frac{4}{3} \cdot \frac{\partial}{\partial x}(4+3 x+6 y)+\frac{5}{3} \cdot \frac{\partial}{\partial y}(4+3 x+6 y)\right)= \\
=\frac{1}{3} \cdot\left(4+3 x+6 y+\frac{4}{3} \cdot 3+\frac{5}{3} \cdot 6\right)=\frac{1}{3} \cdot(4+3 x+6 y+4+10)= \\
=\frac{1}{3} \cdot(18+3 x+6 y)=6+x+2 y
\end{gathered}
$$

Then,

$$
\text { P.I. }=6+x+2 y
$$

Conclusion,

$$
\begin{gathered}
z(x, y)=\text { C.F. }+ \text { P.I. }=e^{x} \cdot \varphi_{1}(y-x)+e^{3 x} \cdot \varphi_{2}(y-2 x)+6+x+2 y \\
\left\{\begin{array}{c}
z(x, y)=e^{x} \cdot \varphi_{1}(y-x)+e^{3 x} \cdot \varphi_{2}(y-2 x)+6+x+2 y \\
\text { where } \varphi_{1} \text { and } \varphi_{2} \text { are arbitrary functions }
\end{array}\right.
\end{gathered}
$$

ANSWER
1)

$$
\begin{gathered}
\left(D^{2}+D-1\right) z=4 e^{x+y} \cos (x+y) \rightarrow \\
\left\{z(x, y)=e^{-\frac{1+\sqrt{5}}{2} \cdot x} \cdot \varphi_{1}(y)+e^{-\frac{1-\sqrt{5}}{2} x} \cdot \varphi_{2}(y)-\frac{4}{5} e^{x+y}(3 \sin (x+y)+2 \cos (x+y))\right. \\
\text { where } \varphi_{1} \text { and } \varphi_{2} \text { are arbitrary functions }
\end{gathered}
$$

2)

$$
\begin{gathered}
\left(D+D^{\prime}-1\right)\left(D+2 D^{\prime}-3\right) z=4+3 x+6 y \rightarrow \\
\left\{\begin{array}{c}
z(x, y)=e^{x} \cdot \varphi_{1}(y-x)+e^{3 x} \cdot \varphi_{2}(y-2 x)+6+x+2 y \\
\text { where } \varphi_{1} \text { and } \varphi_{2} \text { are arbitrary functions }
\end{array}\right.
\end{gathered}
$$

