Answer on Question \#79976 - Math - Calculus

Question

$I=\int \frac{x^{8}}{1+x^{18}} d x$

Solution

We can do a substitution:

$$
x^{9}=t
$$

Then
$x=\sqrt[9]{t} ;$
$d x=\frac{t^{-\frac{8}{9}}}{9} d t \Rightarrow x^{8} d x=\frac{1}{9} d t$.
So
$I=\int \frac{\frac{1}{9}}{1+(\sqrt[9]{t})^{18}} d t=\frac{1}{9} \cdot \int \frac{1}{1+t^{2}} d t=\frac{1}{9} \cdot(\arctan (t)+$ const $)$

And finally put $t=x^{9}$ back again:
$I=\frac{1}{9} \cdot\left(\arctan \left(x^{9}\right)+\right.$ const $)$.

Answer: $\int \frac{x^{8}}{1+x^{18}} d x=\frac{1}{9} \cdot\left(\arctan \left(x^{9}\right)+\right.$ const $)$.

