Answer on Question \#79921 - Math - Linear Algebra

Question

i) The operation 5 defined by $x 5 y=j \ln (x y) j$ where $\ln x$ is the natural logarithm.
ii) The operation 4 defined by $x 4 y=x 2+y 3$.

Also, for those operations which are binary operations, check whether they are associative and commutative

Solution

Associative property:

$$
(a * b) * c=a *(b * c)
$$

Commutative property:

$$
a * b=b * a,
$$

where * is binary operation.
i. $\quad x 5 y=|\ln (x y)|$

Associative property:

$$
\begin{gathered}
(x 5 y) 5 z=|\ln (|\ln (x y)| \cdot z)|=|\ln (|\ln x y|)+\ln z| \\
x 5(y 5 z)=|\ln (x \cdot|\ln y z|)|=|\ln x+\ln (|\ln y z|)| \\
(x 5 y) 5 z \neq x 5(y 5 z)
\end{gathered}
$$

- this operation is not associative.

Commutative property:

$$
\begin{gathered}
x 5 y=|\ln x y| \\
y 5 x=|\ln y x|=|\ln x y| . \\
x 5 y=y 5 x
\end{gathered}
$$

- this operation is commutative.
ii. $\quad x 4 y=x^{2}+y^{3}$

Associative property:

$$
\begin{gathered}
(x 4 y) 4 z=\left(x^{2}+y^{3}\right)^{2}+z^{3} \\
x 4(y 4 z)=x^{2}+\left(y^{2}+z^{3}\right)^{3} \\
(x 4 y) 4 z \neq x 4(y 4 z)
\end{gathered}
$$

- this operation is not associative.

Commutative property:

$$
\begin{aligned}
& x 4 y=x^{2}+y^{3} \\
& y 4 x=y^{2}+x^{3}
\end{aligned}
$$

$$
x 4 y \neq y 4 x
$$

- this operation is not commutative.

