Answer on Question \#79919 - Math - Linear Algebra

Question

Reduce the conic $x^{2}+6 x y+y^{2}$.

Solution

The General Equation for a Conic Section

$$
A x^{2}+B x y+C y^{2}+D x+E y+F=0
$$

In the given case we have $x^{2}+6 x y+y^{2}=0$

$$
\begin{aligned}
& A=1, B=6, C=1, D=0, E=0, F=0 \\
& B^{2}-4 A C=(36)^{2}-4(1)(1)=32>0
\end{aligned}
$$

Then we have hyperbola or 2 intersecting lines.
A conic equation of the type of $A x^{2}+B x y+C y^{2}+D x+E y+F=0$ is rotated by an angle θ, to form a new Cartesian plane with coordinates $\left(x^{\prime}, y^{\prime}\right)$, if θ is appropriately chosen, we can have a new equation without term $x y$ i.e. of standard form.
The relation between coordinates (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ can be expressed as

$$
x=x^{\prime} \cos \theta-y^{\prime} \sin \theta, \quad y=x^{\prime} \sin \theta+y^{\prime} \cos \theta
$$

or

$$
x^{\prime}=x \cos \theta+y \sin \theta, \quad y^{\prime}=-x \sin \theta+y \cos \theta
$$

For this we need to have θ given by

$$
\cot 2 \theta=\frac{A-C}{B}
$$

$A=1, B=6, C=1$

$$
\cot 2 \theta=\frac{1-1}{6}=0=>\theta=\frac{\pi}{4}
$$

Then
$x=x^{\prime} \cos \frac{\pi}{4}-y^{\prime} \sin \frac{\pi}{4}, \quad y=x^{\prime} \sin \frac{\pi}{4}+y^{\prime} \cos \frac{\pi}{4}$
$x=x^{\prime} \frac{1}{\sqrt{2}}-y^{\prime} \frac{1}{\sqrt{2}}, \quad y=x^{\prime} \frac{1}{\sqrt{2}}+y^{\prime} \frac{1}{\sqrt{2}}$
$x^{2}+6 x y+y^{2}=0$
$\left(x^{\prime} \frac{1}{\sqrt{2}}-y^{\prime} \frac{1}{\sqrt{2}}\right)^{2}+6\left(x^{\prime} \frac{1}{\sqrt{2}}-y^{\prime} \frac{1}{\sqrt{2}}\right)\left(x^{\prime} \frac{1}{\sqrt{2}}+y^{\prime} \frac{1}{\sqrt{2}}\right)+\left(x^{\prime} \frac{1}{\sqrt{2}}+y^{\prime} \frac{1}{\sqrt{2}}\right)^{2}=0$
$\frac{1}{2} x^{\prime 2}-x^{\prime} y^{\prime}+\frac{1}{2} y^{\prime 2}+6\left(\frac{1}{2}\right) x^{\prime 2}-6\left(\frac{1}{2}\right) y^{\prime 2}+\frac{1}{2} x^{\prime 2}+x^{\prime} y^{\prime}+\frac{1}{2} y^{\prime 2}=0$
$4 x^{\prime 2}-2 y^{\prime 2}=0$
$\frac{x^{\prime 2}}{2}-y^{\prime 2}=0$
Therefore,
$\frac{x^{2}}{2}-y^{2}=0, \quad$ these are 2 intersecting lines.
$y=-\frac{\sqrt{2}}{2} x$ or $y=\frac{\sqrt{2}}{2} x$

Or
$x^{2}+6 x y+y^{2}=0$
$x^{2}+2 x(3 y)+(3 y)^{2}-(3 y)^{2}+y^{2}=0$
$(x+3 y)^{2}-8 y^{2}=0$
Substituting $x^{\prime}=x+3 y, y^{\prime}=y$ we obtain
$x^{\prime 2}-8 y^{\prime 2}=0$
$\frac{x^{\prime 2}}{8}-y^{\prime 2}=0, \quad$ these are 2 intersecting lines.
$y=-\frac{\sqrt{2}}{4} x$ or $y=\frac{\sqrt{2}}{4} x$

