Answer on Question \#79914-Math - Linear Algebra

Question

Check whether the following system of equations has a solution.

$$
\begin{aligned}
& 4 x+2 y+8 z+6 w=3 \\
& 2 x+2 y+2 z+2 w=1 \\
& x+3 z+2 w=3
\end{aligned}
$$

Solution

Find a rank of the coefficient matrix A:

$$
A=\left(\begin{array}{llll}
4 & 2 & 8 & 6 \\
2 & 2 & 2 & 2 \\
1 & 0 & 3 & 2
\end{array}\right) \sim\left(\begin{array}{cccc}
1 & 0.5 & 2 & 1.5 \\
2 & 2 & 2 & 2 \\
1 & 0 & 3 & 2
\end{array}\right) \sim\left(\begin{array}{cccc}
1 & 0.5 & 2 & 1.5 \\
0 & 1 & -2 & -1 \\
0 & -0.5 & 1 & 0.5
\end{array}\right) \sim\left(\begin{array}{cccc}
1 & 0.5 & 2 & 1.5 \\
0 & 1 & -2 & -1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

$\operatorname{Rank}(\mathrm{A})=2$.
Write an augmented matrix of the system of the equations and find her rank:

$$
\begin{aligned}
& \mathrm{B}=\left(\begin{array}{lllll}
4 & 2 & 8 & 6 & 3 \\
2 & 2 & 2 & 2 & 1 \\
1 & 0 & 3 & 2 & 3
\end{array}\right) \sim\left(\begin{array}{ccccc}
1 & 0.5 & 2 & 1.5 & 0.75 \\
2 & 2 & 2 & 2 & 1 \\
1 & 0 & 3 & 2 & 3
\end{array}\right) \sim\left(\begin{array}{ccccc}
1 & 0.5 & 2 & 1.5 & 0.75 \\
0 & 1 & -2 & -1 & -0.5 \\
0 & -0.5 & 1 & 0.5 & 2.25
\end{array}\right) \sim \\
& \sim\left(\begin{array}{ccccc}
1 & 0.5 & 2 & 1.5 & 0.75 \\
0 & 1 & -2 & -1 & -0.5 \\
0 & 0 & 0 & 0 & 2
\end{array}\right) \sim\left(\begin{array}{ccccc}
1 & 0.5 & 2 & 1.5 & 0.75 \\
0 & 1 & -2 & -1 & -0.5 \\
0 & 0 & 0 & 0 & 1
\end{array}\right) .
\end{aligned}
$$

$\operatorname{Rank}(\mathrm{B})=3$.
$\operatorname{Rank}(\mathrm{A}) \neq \operatorname{Rank}(\mathrm{B})$. By Kronecker-Capelli theorem, the given system of linear equations is incompatible, the system has no solution.

Answer: the system has no solution.

